These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22882832)

  • 1. Spatially selective reagent delivery into cancer cells using a two-layer microfluidic culture system.
    Liu Y; Butler WB; Pappas D
    Anal Chim Acta; 2012 Sep; 743():125-30. PubMed ID: 22882832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially selective cell treatment and collection for integrative drug testing using hydrodynamic flow focusing and shifting.
    Wang X; Zheng J; Iyer MA; Szmelter AH; Eddington DT; Lee SS
    PLoS One; 2023; 18(1):e0279102. PubMed ID: 36649249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A programmable microfluidic cell array for combinatorial drug screening.
    Kim J; Taylor D; Agrawal N; Wang H; Kim H; Han A; Rege K; Jayaraman A
    Lab Chip; 2012 Apr; 12(10):1813-22. PubMed ID: 22456798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An easy to assemble microfluidic perfusion device with a magnetic clamp.
    Tkachenko E; Gutierrez E; Ginsberg MH; Groisman A
    Lab Chip; 2009 Apr; 9(8):1085-95. PubMed ID: 19350090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function.
    Hattori K; Munehira Y; Kobayashi H; Satoh T; Sugiura S; Kanamori T
    J Biosci Bioeng; 2014 Sep; 118(3):327-32. PubMed ID: 24630614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.
    Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ
    Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An open-chamber flow-focusing device for focal stimulation of micropatterned cells.
    Cheng JW; Chang TC; Bhattacharjee N; Folch A
    Biomicrofluidics; 2016 Mar; 10(2):024122. PubMed ID: 27158290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing hypoxia-induced staurosporine resistance in prostate cancer cells with a microfluidic culture system.
    Khanal G; Hiemstra S; Pappas D
    Analyst; 2014 Jul; 139(13):3274-80. PubMed ID: 24479128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid spatial and temporal controlled signal delivery over large cell culture areas.
    VanDersarl JJ; Xu AM; Melosh NA
    Lab Chip; 2011 Sep; 11(18):3057-63. PubMed ID: 21805010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow characterization of a microfluidic device to selectively and reliably apply reagents to a cellular network.
    Santillo MF; Arcibal IG; Ewing AG
    Lab Chip; 2007 Sep; 7(9):1212-5. PubMed ID: 17713624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.
    Hung PJ; Lee PJ; Sabounchi P; Lin R; Lee LP
    Biotechnol Bioeng; 2005 Jan; 89(1):1-8. PubMed ID: 15580587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning cells and shear flow conditions: convenient observation of endothelial cell remoulding, enhanced production of angiogenesis factors and drug response.
    Wang L; Zhang ZL; Wdzieczak-Bakala J; Pang DW; Liu J; Chen Y
    Lab Chip; 2011 Dec; 11(24):4235-40. PubMed ID: 22051695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating steep, shear-free gradients of small molecules for cell culture.
    Kim T; Pinelis M; Maharbiz MM
    Biomed Microdevices; 2009 Feb; 11(1):65-73. PubMed ID: 18688724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.