These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22883827)

  • 1. [Effect of gap size between tooth and restorative materials on microbiolism based caries in vitro].
    Lu WB; Li Y
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 May; 47(5):296-300. PubMed ID: 22883827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new in vitro model to study the relationship of gap size and secondary caries.
    Totiam P; González-Cabezas C; Fontana MR; Zero DT
    Caries Res; 2007; 41(6):467-73. PubMed ID: 17827964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of gap geometry on secondary caries wall lesion development.
    Nassar HM; González-Cabezas C
    Caries Res; 2011; 45(4):346-52. PubMed ID: 21778722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An experimental study on the penetration abilities of resin infiltration into proximal caries lesions in primary molars].
    Liu YH; Ge LH; Zhang ZY; Chi XQ; Hou FC; Chen HZ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Nov; 47(11):684-8. PubMed ID: 23302432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ER-YAG laser pretreatment effect on in vitro secondary caries formation around composite restorations.
    Ceballos L; Toledano M; Osorio R; García-Godoy F; Flaitz C; Hicks J
    Am J Dent; 2001 Feb; 14(1):46-9. PubMed ID: 11806480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of gaps in adhesive restorations in the development of secondary caries lesions: an in situ evaluation.
    Barata JS; Casagrande L; Pitoni CM; De Araujo FB; Garcia-Godoy F; Groismann S
    Am J Dent; 2012 Aug; 25(4):244-8. PubMed ID: 23082391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations.
    Khvostenko D; Hilton TJ; Ferracane JL; Mitchell JC; Kruzic JJ
    Dent Mater; 2016 Jan; 32(1):73-81. PubMed ID: 26621028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimal Gap Size and Dentin Wall Lesion Development Next to Resin Composite in a Microcosm Biofilm Model.
    Maske TT; Kuper NK; Cenci MS; Huysmans MDNJM
    Caries Res; 2017; 51(5):475-481. PubMed ID: 28858860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between gap size and dentine secondary caries formation assessed in a microcosm biofilm model.
    Cenci MS; Pereira-Cenci T; Cury JA; Ten Cate JM
    Caries Res; 2009; 43(2):97-102. PubMed ID: 19321986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolated development of inner (wall) caries like lesions in a bacterial-based in vitro model.
    Diercke K; Lussi A; Kersten T; Seemann R
    Clin Oral Investig; 2009 Dec; 13(4):439-44. PubMed ID: 19214603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compomer materials and secondary caries formation.
    Hicks J; García-Godoy F; Milano M; Flaitz C
    Am J Dent; 2000 Oct; 13(5):231-4. PubMed ID: 11764107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marginal and internal adaptation of bulk-filled Class I and Cuspal coverage direct resin composite restorations.
    Stavridakis MM; Kakaboura AI; Ardu S; Krejci I
    Oper Dent; 2007; 32(5):515-23. PubMed ID: 17910230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of three different adhesive systems using a bacterial method to develop secondary caries in vitro.
    Espejo LC; Simionato MR; Barroso LP; Netto NG; Luz MA
    Am J Dent; 2010 Apr; 23(2):93-7. PubMed ID: 20608299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity wall adaptation of resin-based composites lined with flowable composites.
    Estafan D; Estafan A; Leinfelder KF
    Am J Dent; 2000 Aug; 13(4):192-4. PubMed ID: 11763929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid flow after resin-composite restoration in extracted carious teeth.
    Banomyong D; Palamara JE; Messer HH; Burrow MF
    Eur J Oral Sci; 2009 Jun; 117(3):334-42. PubMed ID: 19583764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of in vitro secondary caries using confocal laser scanning microscope and X-ray analytical microscope.
    Okuda M; Pereira PN; Nikaido T; Tagami J
    Am J Dent; 2003 Jun; 16(3):191-6. PubMed ID: 12967074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demineralization inhibition of direct tooth-colored restorative materials.
    Gonzalez Ede H; Yap AU; Hsu SC
    Oper Dent; 2004; 29(5):578-85. PubMed ID: 15470881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of etching agent on dentinal adhesive interface in primary teeth.
    Rontani RM; Ducatti CH; Garcia-Godoy F; De Goes MF
    J Clin Pediatr Dent; 2000; 24(3):205-9. PubMed ID: 11314144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approximal secondary caries lesion progression, a 20-week in situ study.
    Thomas RZ; Ruben JL; ten Bosch JJ; Fidler V; Huysmans MC
    Caries Res; 2007; 41(5):399-405. PubMed ID: 17713341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial in situ secondary caries formation: effect of various fluoride-containing restorative materials.
    Kielbassa AM; Schulte-Monting J; Garcia-Godoy F; Meyer-Lueckel H
    Oper Dent; 2003; 28(6):765-72. PubMed ID: 14653292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.