These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22884037)

  • 41. Tissue-engineered versus native cartilage: linkage between cellular mechano-transduction and biomechanical properties.
    Lee JH; Kisiday J; Grodzinsky AJ
    Novartis Found Symp; 2003; 249():52-64; discussion 64-9, 170-4, 239-41. PubMed ID: 12708649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Age-related biomechanical properties of chondrocytes in rabbit knee articular cartilage].
    Wei XC; Li CJ; Zhang QY; Chen WY
    Zhonghua Yi Xue Za Zhi; 2009 Sep; 89(33):2360-3. PubMed ID: 20095362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual photon excitation microscopy and image threshold segmentation in live cell imaging during compression testing.
    Moo EK; Abusara Z; Abu Osman NA; Pingguan-Murphy B; Herzog W
    J Biomech; 2013 Aug; 46(12):2024-31. PubMed ID: 23849134
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strain-dependent viscoelastic behaviour and rupture force of single chondrocytes and chondrons under compression.
    Nguyen BV; Wang Q; Kuiper NJ; El Haj AJ; Thomas CR; Zhang Z
    Biotechnol Lett; 2009 Jun; 31(6):803-9. PubMed ID: 19205892
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs.
    Lee DA; Noguchi T; Frean SP; Lees P; Bader DL
    Biorheology; 2000; 37(1-2):149-61. PubMed ID: 10912187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Varying regional topology within knee articular chondrocytes under simulated in vivo conditions.
    Salzmann GM; Buchberger MS; Stoddart MJ; Grad S; Milz S; Niemyer P; Sudkamp NP; Imhoff AB; Alini M
    Tissue Eng Part A; 2011 Feb; 17(3-4):451-61. PubMed ID: 20807006
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of pericellular matrix in development of a mechanically functional neocartilage.
    Graff RD; Kelley SS; Lee GM
    Biotechnol Bioeng; 2003 May; 82(4):457-64. PubMed ID: 12632402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanically induced calcium signaling in chondrocytes in situ.
    Han SK; Wouters W; Clark A; Herzog W
    J Orthop Res; 2012 Mar; 30(3):475-81. PubMed ID: 21882238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unconfined creep compression of chondrocytes.
    Leipzig ND; Athanasiou KA
    J Biomech; 2005 Jan; 38(1):77-85. PubMed ID: 15519342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading.
    Ewers BJ; Dvoracek-Driksna D; Orth MW; Haut RC
    J Orthop Res; 2001 Sep; 19(5):779-84. PubMed ID: 11562121
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alteration of viscoelastic properties is associated with a change in cytoskeleton components of ageing chondrocytes from rabbit knee articular cartilage.
    Duan W; Wei L; Zhang J; Hao Y; Li C; Li H; Li Q; Zhang Q; Chen W; Wei X
    Mol Cell Biomech; 2011 Dec; 8(4):253-74. PubMed ID: 22338706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants.
    Neu CP; Hull ML; Walton JH
    J Orthop Res; 2005 Nov; 23(6):1390-8. PubMed ID: 15972257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes.
    Bush PG; Hall AC
    J Cell Physiol; 2001 Jun; 187(3):304-14. PubMed ID: 11319754
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Collagen synthesis of articular cartilage explants in response to frequency of cyclic mechanical loading.
    Wolf A; Ackermann B; Steinmeyer J
    Cell Tissue Res; 2007 Jan; 327(1):155-66. PubMed ID: 16941123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential effects of cyclic and static pressure on biochemical and morphological properties of chondrocytes from articular cartilage.
    Sharma G; Saxena RK; Mishra P
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):248-55. PubMed ID: 17110007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intrinsic viscoelasticity increases temperature in knee cartilage under physiological loading.
    Abdel-Sayed P; Moghadam MN; Salomir R; Tchernin D; Pioletti DP
    J Mech Behav Biomed Mater; 2014 Feb; 30():123-30. PubMed ID: 24287306
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In-situ measurements of chondrocyte deformation under transient loading.
    Chahine NO; Hung CT; Ateshian GA
    Eur Cell Mater; 2007 May; 13():100-11; discussion 111. PubMed ID: 17538899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.