BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22884343)

  • 1. A recursive algorithm for decomposition and creation of the inverse of the genomic relationship matrix.
    Faux P; Gengler N; Misztal I
    J Dairy Sci; 2012 Oct; 95(10):6093-102. PubMed ID: 22884343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using recursion to compute the inverse of the genomic relationship matrix.
    Misztal I; Legarra A; Aguilar I
    J Dairy Sci; 2014; 97(6):3943-52. PubMed ID: 24679933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods to approximate reliabilities in single-step genomic evaluation.
    Misztal I; Tsuruta S; Aguilar I; Legarra A; VanRaden PM; Lawlor TJ
    J Dairy Sci; 2013 Jan; 96(1):647-54. PubMed ID: 23127903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving efficiently large single-step genomic best linear unbiased prediction models.
    Strandén I; Matilainen K; Aamand GP; Mäntysaari EA
    J Anim Breed Genet; 2017 Jun; 134(3):264-274. PubMed ID: 28508482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score.
    Aguilar I; Misztal I; Johnson DL; Legarra A; Tsuruta S; Lawlor TJ
    J Dairy Sci; 2010 Feb; 93(2):743-52. PubMed ID: 20105546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of genomic recursions in single-step genomic best linear unbiased predictor for US Holsteins with a large number of genotyped animals.
    Masuda Y; Misztal I; Tsuruta S; Legarra A; Aguilar I; Lourenco DAL; Fragomeni BO; Lawlor TJ
    J Dairy Sci; 2016 Mar; 99(3):1968-1974. PubMed ID: 26805987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inexpensive Computation of the Inverse of the Genomic Relationship Matrix in Populations with Small Effective Population Size.
    Misztal I
    Genetics; 2016 Feb; 202(2):401-9. PubMed ID: 26584903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is single-step genomic REML with the algorithm for proven and young more computationally efficient when less generations of data are present?
    Junqueira VS; Lourenco D; Masuda Y; Cardoso FF; Lopes PS; Silva FFE; Misztal I
    J Anim Sci; 2022 May; 100(5):. PubMed ID: 35289906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation.
    Aguilar I; Misztal I; Legarra A; Tsuruta S
    J Anim Breed Genet; 2011 Dec; 128(6):422-8. PubMed ID: 22059575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method to approximate the inverse of a part of the additive relationship matrix.
    Faux P; Gengler N
    J Anim Breed Genet; 2015 Jun; 132(3):229-38. PubMed ID: 25560252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inversion of a part of the numerator relationship matrix using pedigree information.
    Faux P; Gengler N
    Genet Sel Evol; 2013 Dec; 45(1):45. PubMed ID: 24313900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins.
    Tsuruta S; Misztal I; Aguilar I; Lawlor TJ
    J Dairy Sci; 2011 Aug; 94(8):4198-204. PubMed ID: 21787955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of genomic recursions and algorithm for proven and young animals for single-step genomic BLUP analyses--a simulation study.
    Fragomeni BO; Lourenco DA; Tsuruta S; Masuda Y; Aguilar I; Misztal I
    J Anim Breed Genet; 2015 Oct; 132(5):340-5. PubMed ID: 25857518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-step methods for genomic evaluation in pigs.
    Christensen OF; Madsen P; Nielsen B; Ostersen T; Su G
    Animal; 2012 Oct; 6(10):1565-71. PubMed ID: 22717310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling inbreeding and maximizing genetic gain using semi-definite programming with pedigree-based and genomic relationships.
    Schierenbeck S; Pimentel EC; Tietze M; Körte J; Reents R; Reinhardt F; Simianer H; König S
    J Dairy Sci; 2011 Dec; 94(12):6143-52. PubMed ID: 22118102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic evaluation of dairy cattle using a simple heritable genetic ground.
    Pribyl J; Rehout V; Citek J; Pribylova J
    J Sci Food Agric; 2010 Aug; 90(11):1765-73. PubMed ID: 20564310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of an approximate REML algorithm for parameter estimation in a multitrait, multiple across-country evaluation model: a simulation study.
    Tarrés J; Liu Z; Ducrocq V; Reinhardt F; Reents R
    J Dairy Sci; 2007 Oct; 90(10):4846-55. PubMed ID: 17881708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A relationship matrix including full pedigree and genomic information.
    Legarra A; Aguilar I; Misztal I
    J Dairy Sci; 2009 Sep; 92(9):4656-63. PubMed ID: 19700729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The estimation of genomic relationships using breedwise allele frequencies among animals in multibreed populations.
    Makgahlela ML; Strandén I; Nielsen US; Sillanpää MJ; Mäntysaari EA
    J Dairy Sci; 2013 Aug; 96(8):5364-75. PubMed ID: 23769355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-dependent changes in genomic predictions using the Algorithm for Proven and Young in single-step genomic best linear unbiased prediction.
    Misztal I; Tsuruta S; Pocrnic I; Lourenco D
    J Anim Sci; 2020 Dec; 98(12):. PubMed ID: 33211798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.