These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22884434)

  • 61. Polysaccharide-protein interaction: a rheological study of the gel-sol transition of a gelatin-methylcellulose-water system.
    Nishinari K; Hofmann KE; Kohyama K; Moritaka H; Nishinari N; Watase M
    Biorheology; 1993; 30(3-4):243-52. PubMed ID: 8286725
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Selective Mucin/Methylcellulose Hybrid Gel with Tailored Mechanical Properties.
    Nowald C; Penk A; Chiu HY; Bein T; Huster D; Lieleg O
    Macromol Biosci; 2016 Apr; 16(4):567-79. PubMed ID: 26748668
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of Water State and Gelation of Methylcellulose Thermo-reversible Hydrogels by Thermal Analysis and NMR.
    Nishimoto Y; Eguchi H; Shimoda E; Suzuki T
    Anal Sci; 2015; 31(9):929-34. PubMed ID: 26353960
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Effect of deacetylation degree of chitosan on thermosensitive hydrogel via rheological characterization].
    Zhang X; Zhu B; Gu Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jul; 22(7):861-3. PubMed ID: 18681291
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Efficient formation of multicompartment hydrogels by stepwise self-assembly of thermoresponsive ABC triblock terpolymers.
    Zhou C; Hillmyer MA; Lodge TP
    J Am Chem Soc; 2012 Jun; 134(25):10365-8. PubMed ID: 22694801
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thermoresponsive poly(N-isopropylacrylamide)-g-methylcellulose hydrogel as a three-dimensional extracellular matrix for cartilage-engineered applications.
    Sá-Lima H; Tuzlakoglu K; Mano JF; Reis RL
    J Biomed Mater Res A; 2011 Sep; 98(4):596-603. PubMed ID: 21721116
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Thermoreversible laminin-functionalized hydrogel for neural tissue engineering.
    Stabenfeldt SE; García AJ; LaPlaca MC
    J Biomed Mater Res A; 2006 Jun; 77(4):718-25. PubMed ID: 16555267
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Injectable and Thermosensitive Soluble Extracellular Matrix and Methylcellulose Hydrogels for Stem Cell Delivery in Skin Wounds.
    Kim EJ; Choi JS; Kim JS; Choi YC; Cho YW
    Biomacromolecules; 2016 Jan; 17(1):4-11. PubMed ID: 26607961
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structure and gelation mechanism of tunable guanosine-based supramolecular hydrogels.
    Li Z; Buerkle LE; Orseno MR; Streletzky KA; Seifert S; Jamieson AM; Rowan SJ
    Langmuir; 2010 Jun; 26(12):10093-101. PubMed ID: 20384308
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Thermoreversible in situ gelling poloxamer-based systems with chitosan nanocomplexes for prolonged subcutaneous delivery of heparin: design and in vitro evaluation.
    Radivojša M; Grabnar I; Ahlin Grabnar P
    Eur J Pharm Sci; 2013 Sep; 50(1):93-101. PubMed ID: 23524253
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of vitamin derivatives on gelation rate and gel strength of methylcellulose.
    Kim MH; Park H; Shin JY; Park WH
    Carbohydr Polym; 2018 Sep; 196():414-421. PubMed ID: 29891313
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Thermoreversible protein hydrogel as cell scaffold.
    Yan H; Saiani A; Gough JE; Miller AF
    Biomacromolecules; 2006 Oct; 7(10):2776-82. PubMed ID: 17025352
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gel formation and low-temperature intramolecular conformation transition of a triple-helical polysaccharide lentinan in water.
    Zhang Y; Xu X; Zhang L
    Biopolymers; 2008 Oct; 89(10):852-61. PubMed ID: 18506809
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites.
    Fu S; Guo G; Gong C; Zeng S; Liang H; Luo F; Zhang X; Zhao X; Wei Y; Qian Z
    J Phys Chem B; 2009 Dec; 113(52):16518-25. PubMed ID: 19947637
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bicomponent hydrogels of lumichrome and melamine: photoluminescence property and its dependency on pH and temperature.
    Bairi P; Roy B; Nandi AK
    J Phys Chem B; 2010 Sep; 114(35):11454-61. PubMed ID: 20715827
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Area under rheogram as multi-point viscosity characteristic of the sterilized hypromellose hydrogels.
    Sklubalová Z; Zatloukal Z
    Acta Pol Pharm; 2011; 68(4):565-9. PubMed ID: 21796939
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Rheological study of physical cross-linked quaternized cellulose hydrogels induced by β-glycerophosphate.
    You J; Zhou J; Li Q; Zhang L
    Langmuir; 2012 Mar; 28(11):4965-73. PubMed ID: 22360300
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In situ observation of gelation of methylcellulose aqueous solution with viscosity measuring instrument in the diamond anvil cell.
    Wang Z; Yang K; Li H; Yuan C; Zhu X; Huang H; Wang Y; Su L; Nishinari K; Fang Y
    Carbohydr Polym; 2018 Jun; 190():190-195. PubMed ID: 29628237
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Instantaneous low temperature gelation by a multicomponent organogelator liquid system based on ammonium salts.
    García Velázquez D; Díaz Díaz D; Gutiérrez Ravelo A; Marrero Tellado JJ
    J Am Chem Soc; 2008 Jun; 130(25):7967-73. PubMed ID: 18517206
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development and characterisation of modified poloxamer 407 thermoresponsive depot systems containing cubosomes.
    Kojarunchitt T; Hook S; Rizwan S; Rades T; Baldursdottir S
    Int J Pharm; 2011 Apr; 408(1-2):20-6. PubMed ID: 21272624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.