These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 22884468)
1. Atomic force microscopy imaging of lipid rafts of human breast cancer cells. Orsini F; Cremona A; Arosio P; Corsetto PA; Montorfano G; Lascialfari A; Rizzo AM Biochim Biophys Acta; 2012 Dec; 1818(12):2943-9. PubMed ID: 22884468 [TBL] [Abstract][Full Text] [Related]
2. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Garner AE; Smith DA; Hooper NM Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480 [TBL] [Abstract][Full Text] [Related]
3. Visualizing detergent resistant domains in model membranes with atomic force microscopy. Rinia HA; Snel MM; van der Eerden JP; de Kruijff B FEBS Lett; 2001 Jul; 501(1):92-6. PubMed ID: 11457463 [TBL] [Abstract][Full Text] [Related]
4. Chemical-physical changes in cell membrane microdomains of breast cancer cells after omega-3 PUFA incorporation. Corsetto PA; Cremona A; Montorfano G; Jovenitti IE; Orsini F; Arosio P; Rizzo AM Cell Biochem Biophys; 2012 Sep; 64(1):45-59. PubMed ID: 22622660 [TBL] [Abstract][Full Text] [Related]
5. Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy. El Kirat K; Morandat S Biochim Biophys Acta; 2007 Sep; 1768(9):2300-9. PubMed ID: 17560898 [TBL] [Abstract][Full Text] [Related]
6. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation. Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336 [TBL] [Abstract][Full Text] [Related]
7. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Geisse NA; Cover TL; Henderson RM; Edwardson JM Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. Radeva G; Sharom FJ Biochem J; 2004 May; 380(Pt 1):219-30. PubMed ID: 14769131 [TBL] [Abstract][Full Text] [Related]
9. Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy. Lawrence JC; Saslowsky DE; Edwardson JM; Henderson RM Biophys J; 2003 Mar; 84(3):1827-32. PubMed ID: 12609884 [TBL] [Abstract][Full Text] [Related]
10. High-resolution mapping and recognition of lipid domains using AFM with toxin-derivatized probes. Dumitru AC; Conrard L; Lo Giudice C; Henriet P; Veiga-da-Cunha M; Derclaye S; Tyteca D; Alsteens D Chem Commun (Camb); 2018 Jun; 54(50):6903-6906. PubMed ID: 29808215 [TBL] [Abstract][Full Text] [Related]
11. Lipid rafts of purified mouse brain synaptosomes prepared with or without detergent reveal different lipid and protein domains. Eckert GP; Igbavboa U; Müller WE; Wood WG Brain Res; 2003 Feb; 962(1-2):144-50. PubMed ID: 12543465 [TBL] [Abstract][Full Text] [Related]
12. Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. Shaw JE; Epand RF; Epand RM; Li Z; Bittman R; Yip CM Biophys J; 2006 Mar; 90(6):2170-8. PubMed ID: 16361347 [TBL] [Abstract][Full Text] [Related]
13. Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. Pike LJ; Han X; Gross RW J Biol Chem; 2005 Jul; 280(29):26796-804. PubMed ID: 15917253 [TBL] [Abstract][Full Text] [Related]
14. Cholesterol drives aβ(1-42) interaction with lipid rafts in model membranes. Seghezza S; Diaspro A; Canale C; Dante S Langmuir; 2014 Nov; 30(46):13934-41. PubMed ID: 25360827 [TBL] [Abstract][Full Text] [Related]
15. Visualizing the localization of sulfoglycolipids in lipid raft domains in model membranes and sperm membrane extracts. Weerachatyanukul W; Probodh I; Kongmanas K; Tanphaichitr N; Johnston LJ Biochim Biophys Acta; 2007 Feb; 1768(2):299-310. PubMed ID: 17045957 [TBL] [Abstract][Full Text] [Related]
16. The isolation and structure of membrane lipid rafts from rat brain. Chen X; Morris R; Lawrence MJ; Quinn PJ Biochimie; 2007 Feb; 89(2):192-6. PubMed ID: 16935406 [TBL] [Abstract][Full Text] [Related]
17. Reversible Dissolution of Microdomains in Detergent-Resistant Membranes at Physiological Temperature. Cremona A; Orsini F; Corsetto PA; Hoogenboom BW; Rizzo AM PLoS One; 2015; 10(7):e0132696. PubMed ID: 26147107 [TBL] [Abstract][Full Text] [Related]
18. Interactions of Triton X-100 with sphingomyelin and phosphatidylcholine monolayers: influence of the cholesterol content. Abi-Rizk G; Besson F Colloids Surf B Biointerfaces; 2008 Oct; 66(2):163-7. PubMed ID: 18644701 [TBL] [Abstract][Full Text] [Related]
19. Direct evidence of lipid rafts by in situ atomic force microscopy. Cai M; Zhao W; Shang X; Jiang J; Ji H; Tang Z; Wang H Small; 2012 Apr; 8(8):1243-50. PubMed ID: 22351491 [TBL] [Abstract][Full Text] [Related]
20. Isolation and Analysis of Detergent-Resistant Membrane Fractions. Aureli M; Grassi S; Sonnino S; Prinetti A Methods Mol Biol; 2016; 1376():107-31. PubMed ID: 26552679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]