BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22884491)

  • 1. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases.
    van Zelm R; Stam G; Huijbregts MA; van de Meent D
    Chemosphere; 2013 Jan; 90(2):312-7. PubMed ID: 22884491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Including ecotoxic impacts on warm-blooded predators in life cycle impact assessment.
    Golsteijn L; van Zelm R; Veltman K; Musters G; Hendriks AJ; Huijbregts MA
    Integr Environ Assess Manag; 2012 Apr; 8(2):372-8. PubMed ID: 21796770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment.
    Huijbregts MA; Struijs J; Goedkoop M; Heijungs R; Jan Hendriks A; van de Meent D
    Chemosphere; 2005 Dec; 61(10):1495-504. PubMed ID: 15964049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-based concept for transport and partitioning of ionizing organics.
    Trapp S; Franco A; Mackay D
    Environ Sci Technol; 2010 Aug; 44(16):6123-9. PubMed ID: 20704208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial variability versus parameter uncertainty in freshwater fate and exposure factors of chemicals.
    Nijhof CO; Huijbregts MA; Golsteijn L; van Zelm R
    Chemosphere; 2016 Apr; 149():101-7. PubMed ID: 26855212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geographical scenario uncertainty in generic fate and exposure factors of toxic pollutants for life-cycle impact assessment.
    Huijbregts MA; Lundi S; McKone TE; van de Meent D
    Chemosphere; 2003 May; 51(6):501-8. PubMed ID: 12615102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of the indoor environment on the fate of organic chemicals in the urban landscape.
    Cousins AP
    Sci Total Environ; 2012 Nov; 438():233-41. PubMed ID: 23000549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.
    Kipka U; Di Toro DM
    Environ Toxicol Chem; 2011 Sep; 30(9):2023-9. PubMed ID: 21721034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental toxicological fate prediction of diverse organic chemicals based on steady-state compartmental chemical mass ratio using quantitative structure-fate relationship (QSFR) models.
    Pramanik S; Roy K
    Chemosphere; 2013 Jul; 92(5):600-7. PubMed ID: 23642702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Susceptibility of human populations to environmental exposure to organic contaminants.
    Undeman E; Brown TN; Wania F; McLachlan MS
    Environ Sci Technol; 2010 Aug; 44(16):6249-55. PubMed ID: 20704223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric fate of non-volatile and ionizable compounds.
    Franco A; Hauschild M; Jolliet O; Trapp S
    Chemosphere; 2011 Nov; 85(8):1353-9. PubMed ID: 21885086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving substance information in USEtox
    Saouter E; Aschberger K; Fantke P; Hauschild MZ; Bopp SK; Kienzler A; Paini A; Pant R; Secchi M; Sala S
    Environ Toxicol Chem; 2017 Dec; 36(12):3450-3462. PubMed ID: 28618056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.
    Sjöstedt CS; Gustafsson JP; Köhler SJ
    Environ Sci Technol; 2010 Nov; 44(22):8587-93. PubMed ID: 20958024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for the dissociating properties of organic chemicals in LCIA: an uncertainty analysis applied to micropollutants in the assessment of freshwater ecotoxicity.
    Morais SA; Delerue-Matos C; Gabarrell X
    J Hazard Mater; 2013 Mar; 248-249():461-8. PubMed ID: 23434828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccumulation of organic contaminants in humans: a multimedia perspective and the importance of biotransformation.
    McLachlan MS; Czub G; MacLeod M; Arnot JA
    Environ Sci Technol; 2011 Jan; 45(1):197-202. PubMed ID: 20701275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical assessment of the environmental fate of linear and cyclic volatile methylsiloxanes using multimedia fugacity models.
    Panagopoulos D; MacLeod M
    Environ Sci Process Impacts; 2018 Jan; 20(1):183-194. PubMed ID: 29300410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving substance information in USEtox
    Saouter E; Aschberger K; Fantke P; Hauschild MZ; Kienzler A; Paini A; Pant R; Radovnikovic A; Secchi M; Sala S
    Environ Toxicol Chem; 2017 Dec; 36(12):3463-3470. PubMed ID: 28671290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening organic chemicals in commerce for emissions in the context of environmental and human exposure.
    Breivik K; Arnot JA; Brown TN; McLachlan MS; Wania F
    J Environ Monit; 2012 Aug; 14(8):2028-37. PubMed ID: 22785348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing exposure to transformation products of soil-applied organic contaminants in surface water: comparison of model predictions and field data.
    Kern S; Singer H; Hollender J; Schwarzenbach RP; Fenner K
    Environ Sci Technol; 2011 Apr; 45(7):2833-41. PubMed ID: 21370857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.