These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 22884627)
21. Synthesis of Cross-linked Poly (N-isopropylacrylamide) Magnetic Nano Composite for Application in the Controlled Release of Doxorubicin. Kaamyabi S; Badrian A; Akbarzadeh A Pharm Nanotechnol; 2017; 5(1):67-75. PubMed ID: 28948911 [TBL] [Abstract][Full Text] [Related]
22. Amphiphilic polyelectrolyte/prodrug nanoparticles constructed by synergetic electrostatic and hydrophobic interactions with cooperative pH-sensitivity for controlled doxorubicin delivery. Huang P; Wang W; Zhou J; Zhao F; Zhang Y; Liu J; Liu J; Dong A; Kong D; Zhang J ACS Appl Mater Interfaces; 2015 Mar; 7(11):6340-50. PubMed ID: 25746122 [TBL] [Abstract][Full Text] [Related]
23. Reverse micelle-loaded lipid nanocarriers: a novel drug delivery system for the sustained release of doxorubicin hydrochloride. Vrignaud S; Anton N; Gayet P; Benoit JP; Saulnier P Eur J Pharm Biopharm; 2011 Sep; 79(1):197-204. PubMed ID: 21345371 [TBL] [Abstract][Full Text] [Related]
24. Enhanced anti-tumor effect of pH-responsive dextrin nanogels delivering doxorubicin on colorectal cancer. Manchun S; Dass CR; Cheewatanakornkool K; Sriamornsak P Carbohydr Polym; 2015 Aug; 126():222-30. PubMed ID: 25933543 [TBL] [Abstract][Full Text] [Related]
25. Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: effect of polymer chain modification. Chytil P; Etrych T; Konák C; Sírová M; Mrkvan T; Ríhová B; Ulbrich K J Control Release; 2006 Sep; 115(1):26-36. PubMed ID: 16899320 [TBL] [Abstract][Full Text] [Related]
26. Superparamagnetic Reduction/pH/Temperature Multistimuli-Responsive Nanoparticles for Targeted and Controlled Antitumor Drug Delivery. Zeng J; Du P; Liu L; Li J; Tian K; Jia X; Zhao X; Liu P Mol Pharm; 2015 Dec; 12(12):4188-99. PubMed ID: 26554495 [TBL] [Abstract][Full Text] [Related]
27. Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. Chiang WH; Huang WC; Chang CW; Shen MY; Shih ZF; Huang YF; Lin SC; Chiu HC J Control Release; 2013 Jun; 168(3):280-8. PubMed ID: 23562635 [TBL] [Abstract][Full Text] [Related]
28. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Pan YJ; Chen YY; Wang DR; Wei C; Guo J; Lu DR; Chu CC; Wang CC Biomaterials; 2012 Sep; 33(27):6570-9. PubMed ID: 22704845 [TBL] [Abstract][Full Text] [Related]
29. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy. Li W; Yi X; Liu X; Zhang Z; Fu Y; Gong T J Control Release; 2016 Mar; 225():170-82. PubMed ID: 26826304 [TBL] [Abstract][Full Text] [Related]
30. Design of pH/reduction dual-responsive nanoparticles as drug delivery system for DOX: Modulating controlled release behavior with bimodal drug-loading. Liu P; Zhang R; Pei M Colloids Surf B Biointerfaces; 2017 Dec; 160():455-461. PubMed ID: 28985607 [TBL] [Abstract][Full Text] [Related]
31. Lipomer of doxorubicin hydrochloride for enhanced oral bioavailability. Benival DM; Devarajan PV Int J Pharm; 2012 Feb; 423(2):554-61. PubMed ID: 22155412 [TBL] [Abstract][Full Text] [Related]
32. Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles. You JO; Auguste DT Biomaterials; 2008 Apr; 29(12):1950-7. PubMed ID: 18255142 [TBL] [Abstract][Full Text] [Related]
33. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Mussi SV; Silva RC; Oliveira MC; Lucci CM; Azevedo RB; Ferreira LA Eur J Pharm Sci; 2013 Jan; 48(1-2):282-90. PubMed ID: 23178339 [TBL] [Abstract][Full Text] [Related]
34. Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery. Miryala B; Godeshala S; Grandhi TS; Christensen MD; Tian Y; Rege K Colloids Surf B Biointerfaces; 2016 Oct; 146():924-37. PubMed ID: 27472455 [TBL] [Abstract][Full Text] [Related]
35. Temperature- and pH-responsive nanoparticles of biocompatible polyurethanes for doxorubicin delivery. Wang A; Gao H; Sun Y; Sun YL; Yang YW; Wu G; Wang Y; Fan Y; Ma J Int J Pharm; 2013 Jan; 441(1-2):30-9. PubMed ID: 23262421 [TBL] [Abstract][Full Text] [Related]
36. Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Kang GD; Cheon SH; Song SC Int J Pharm; 2006 Aug; 319(1-2):29-36. PubMed ID: 16677786 [TBL] [Abstract][Full Text] [Related]
37. pH and Glutathione Dual-Responsive Dynamic Cross-Linked Supramolecular Network on Mesoporous Silica Nanoparticles for Controlled Anticancer Drug Release. Li QL; Xu SH; Zhou H; Wang X; Dong B; Gao H; Tang J; Yang YW ACS Appl Mater Interfaces; 2015 Dec; 7(51):28656-64. PubMed ID: 26633741 [TBL] [Abstract][Full Text] [Related]
38. Self-Assembled Cationic Biodegradable Nanoparticles from pH-Responsive Amino-Acid-Based Poly(Ester Urea Urethane)s and Their Application As a Drug Delivery Vehicle. He M; Potuck A; Kohn JC; Fung K; Reinhart-King CA; Chu CC Biomacromolecules; 2016 Feb; 17(2):523-37. PubMed ID: 26650653 [TBL] [Abstract][Full Text] [Related]
39. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Wong HL; Rauth AM; Bendayan R; Wu XY Eur J Pharm Biopharm; 2007 Mar; 65(3):300-8. PubMed ID: 17156986 [TBL] [Abstract][Full Text] [Related]
40. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions. Liu SQ; Tong YW; Yang YY Biomaterials; 2005 Aug; 26(24):5064-74. PubMed ID: 15769542 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]