BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22884633)

  • 21. Disrupting the ciliary gradient of active Arl3 affects rod photoreceptor nuclear migration.
    Travis AM; Manocha S; Willer JR; Wessler TS; Skiba NP; Pearring JN
    Elife; 2023 Jan; 12():. PubMed ID: 36598133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium.
    Wright KJ; Baye LM; Olivier-Mason A; Mukhopadhyay S; Sang L; Kwong M; Wang W; Pretorius PR; Sheffield VC; Sengupta P; Slusarski DC; Jackson PK
    Genes Dev; 2011 Nov; 25(22):2347-60. PubMed ID: 22085962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The guanine nucleotide exchange factor Arf-like protein 13b is essential for assembly of the mouse photoreceptor transition zone and outer segment.
    Hanke-Gogokhia C; Wu Z; Sharif A; Yazigi H; Frederick JM; Baehr W
    J Biol Chem; 2017 Dec; 292(52):21442-21456. PubMed ID: 29089384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors.
    Hanke-Gogokhia C; Wu Z; Gerstner CD; Frederick JM; Zhang H; Baehr W
    J Biol Chem; 2016 Mar; 291(13):7142-55. PubMed ID: 26814127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Dynamic and Complex Role of the Joubert Syndrome-Associated Ciliary Protein, ADP-Ribosylation Factor-Like GTPase 13B (ARL13B) in Photoreceptor Development and Maintenance.
    Dilan T; Ramamurthy V
    Adv Exp Med Biol; 2019; 1185():501-505. PubMed ID: 31884661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FAM161A, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies.
    Di Gioia SA; Letteboer SJ; Kostic C; Bandah-Rozenfeld D; Hetterschijt L; Sharon D; Arsenijevic Y; Roepman R; Rivolta C
    Hum Mol Genet; 2012 Dec; 21(23):5174-84. PubMed ID: 22940612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Interaction of CCDC104/BARTL1 with Arl3 and Implications for Ciliary Function.
    Lokaj M; Kösling SK; Koerner C; Lange SM; van Beersum SE; van Reeuwijk J; Roepman R; Horn N; Ueffing M; Boldt K; Wittinghofer A
    Structure; 2015 Nov; 23(11):2122-32. PubMed ID: 26455799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The retinitis pigmentosa protein RP2 interacts with polycystin 2 and regulates cilia-mediated vertebrate development.
    Hurd T; Zhou W; Jenkins P; Liu CJ; Swaroop A; Khanna H; Martens J; Hildebrandt F; Margolis B
    Hum Mol Genet; 2010 Nov; 19(22):4330-44. PubMed ID: 20729296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retinitis pigmentosa 2 pathogenic mutants degrade through BAG6/HUWE1 complex.
    Zhang J; Gao H; Jiang N; Jing M; Sun Z; Du C; Zhang J; Wang M; Li J; Gao F; Hu Y; Mu H; Cui X
    Exp Eye Res; 2022 Jul; 220():109110. PubMed ID: 35569519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of Guanosine Triphosphate Hydrolysis by the Visual Proteins Arl3-RP2: Free Energy Reaction Profiles Computed with Ab Initio Type QM/MM Potentials.
    Khrenova MG; Bulavko ES; Mulashkin FD; Nemukhin AV
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34208932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The retinitis pigmentosa-mutated RP2 protein exhibits exonuclease activity and translocates to the nucleus in response to DNA damage.
    Yoon JH; Qiu J; Cai S; Chen Y; Cheetham ME; Shen B; Pfeifer GP
    Exp Cell Res; 2006 May; 312(8):1323-34. PubMed ID: 16457815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathogenic mutations in retinitis pigmentosa 2 predominantly result in loss of RP2 protein stability in humans and zebrafish.
    Liu F; Qin Y; Yu S; Soares DC; Yang L; Weng J; Li C; Gao M; Lu Z; Hu X; Liu X; Jiang T; Liu JY; Shu X; Tang Z; Liu M
    J Biol Chem; 2017 Apr; 292(15):6225-6239. PubMed ID: 28209709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119.
    Ismail SA; Chen YX; Miertzschke M; Vetter IR; Koerner C; Wittinghofer A
    EMBO J; 2012 Oct; 31(20):4085-94. PubMed ID: 22960633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RPGR: role in the photoreceptor cilium, human retinal disease, and gene therapy.
    Hosch J; Lorenz B; Stieger K
    Ophthalmic Genet; 2011 Mar; 32(1):1-11. PubMed ID: 21174525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localization of retinitis pigmentosa 2 to cilia is regulated by Importin beta2.
    Hurd TW; Fan S; Margolis BL
    J Cell Sci; 2011 Mar; 124(Pt 5):718-26. PubMed ID: 21285245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C.
    Bartolini F; Bhamidipati A; Thomas S; Schwahn U; Lewis SA; Cowan NJ
    J Biol Chem; 2002 Apr; 277(17):14629-34. PubMed ID: 11847227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delineation of the plasma membrane targeting domain of the X-linked retinitis pigmentosa protein RP2.
    Chapple JP; Hardcastle AJ; Grayson C; Willison KR; Cheetham ME
    Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):2015-20. PubMed ID: 12037013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutations in the X-linked RP2 gene cause intracellular misrouting and loss of the protein.
    Schwahn U; Paland N; Techritz S; Lenzner S; Berger W
    Hum Mol Genet; 2001 May; 10(11):1177-83. PubMed ID: 11371510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular assemblies that control rhodopsin transport to the cilia.
    Deretic D; Wang J
    Vision Res; 2012 Dec; 75():5-10. PubMed ID: 22892112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new Leu253Arg mutation in the RP2 gene in a Japanese family with X-linked retinitis pigmentosa.
    Wada Y; Nakazawa M; Abe T; Tamai M
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):290-3. PubMed ID: 10634633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.