These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22884997)

  • 1. High latitude fish in a high CO2 world: Synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids.
    Enzor LA; Zippay ML; Place SP
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Jan; 164(1):154-61. PubMed ID: 22884997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-seq reveals a diminished acclimation response to the combined effects of ocean acidification and elevated seawater temperature in Pagothenia borchgrevinki.
    Huth TJ; Place SP
    Mar Genomics; 2016 Aug; 28():87-97. PubMed ID: 26969095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is warmer better? Decreased oxidative damage in notothenioid fish after long-term acclimation to multiple stressors.
    Enzor LA; Place SP
    J Exp Biol; 2014 Sep; 217(Pt 18):3301-10. PubMed ID: 25013114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki.
    Franklin CE; Davison W; Seebacher F
    J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Metabolic Capacity of Antarctic Fishes to Acclimate to Future Ocean Conditions.
    Todgham AE; Mandic M
    Integr Comp Biol; 2020 Dec; 60(6):1425-1437. PubMed ID: 32814956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO
    Davis BE; Flynn EE; Miller NA; Nelson FA; Fangue NA; Todgham AE
    Glob Chang Biol; 2018 Feb; 24(2):e655-e670. PubMed ID: 29155460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of elevated temperature and ocean acidification on the metabolic pathways of notothenioid fish.
    Enzor LA; Hunter EM; Place SP
    Conserv Physiol; 2017; 5(1):cox019. PubMed ID: 28852515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial acclimation capacities to ocean warming and acidification are limited in the antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons.
    Strobel A; Graeve M; Poertner HO; Mark FC
    PLoS One; 2013; 8(7):e68865. PubMed ID: 23874794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiovascular oxygen transport limitations to thermal niche expansion and the role of environmental Po2 in Antarctic notothenioid fishes.
    Buckley BA; Hedrick MS; Hillman SS
    Physiol Biochem Zool; 2014; 87(4):499-506. PubMed ID: 24940914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes.
    Todgham AE; Crombie TA; Hofmann GE
    J Exp Biol; 2017 Feb; 220(Pt 3):369-378. PubMed ID: 27872216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of elevated temperature on membrane lipid saturation in Antarctic notothenioid fish.
    Malekar VC; Morton JD; Hider RN; Cruickshank RH; Hodge S; Metcalf VJ
    PeerJ; 2018; 6():e4765. PubMed ID: 29796342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification.
    Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F
    Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifreeze glycoprotein levels in Antarctic notothenioid fishes inhabiting different thermal environments and the effect of warm acclimation.
    Jin Y; DeVries AL
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Jul; 144(3):290-300. PubMed ID: 16725360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?
    Munday PL; McCormick MI; Nilsson GE
    J Exp Biol; 2012 Nov; 215(Pt 22):3865-73. PubMed ID: 23100485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total Mercury in Six Antarctic Notothenioid Fishes.
    Wintle NJ; Sleadd IM; Gundersen DT; Kohl K; Buckley BA
    Bull Environ Contam Toxicol; 2015 Nov; 95(5):557-60. PubMed ID: 26155962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors.
    Huth TJ; Place SP
    BMC Genomics; 2016 Feb; 17():127. PubMed ID: 26897172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Untargeted metabolic profiling reveals distinct patterns of thermal sensitivity in two related notothenioids.
    Rebelein A; Pörtner HO; Bock C
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Mar; 217():43-54. PubMed ID: 29288768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species.
    Mandic M; Frazier AJ; Naslund AW; Todgham AE
    J Comp Physiol B; 2022 Nov; 192(6):737-750. PubMed ID: 36104549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities.
    Ferrari MC; Munday PL; Rummer JL; McCormick MI; Corkill K; Watson SA; Allan BJ; Meekan MG; Chivers DP
    Glob Chang Biol; 2015 May; 21(5):1848-55. PubMed ID: 25430991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.