These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 22885034)
1. Engineering and adaptive evolution of Escherichia coli for D-lactate fermentation reveals GatC as a xylose transporter. Utrilla J; Licona-Cassani C; Marcellin E; Gosset G; Nielsen LK; Martinez A Metab Eng; 2012 Sep; 14(5):469-76. PubMed ID: 22885034 [TBL] [Abstract][Full Text] [Related]
2. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli. Kurgan G; Sievert C; Flores A; Schneider A; Billings T; Panyon L; Morris C; Taylor E; Kurgan L; Cartwright R; Wang X Biotechnol Bioeng; 2019 Aug; 116(8):2074-2086. PubMed ID: 31038200 [TBL] [Abstract][Full Text] [Related]
3. Experimental evolution reveals an effective avenue for d-lactic acid production from glucose-xylose mixtures via enhanced Glk activity and a cAMP-independent CRP mutation. Qiao J; Fang Y; Li Z; Li J; Cai J; Liu W; Wang H; Zhu X; Zhang X Biotechnol Bioeng; 2024 Nov; 121(11):3514-3526. PubMed ID: 39082641 [TBL] [Abstract][Full Text] [Related]
4. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect. Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Kim SM; Choi BY; Ryu YS; Jung SH; Park JM; Kim GH; Lee SK Metab Eng; 2015 Jul; 30():141-148. PubMed ID: 26045332 [TBL] [Abstract][Full Text] [Related]
7. Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter. Nduko JM; Matsumoto K; Ooi T; Taguchi S Appl Microbiol Biotechnol; 2014 Mar; 98(6):2453-60. PubMed ID: 24337250 [TBL] [Abstract][Full Text] [Related]
9. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production. Wang X; Goh EB; Beller HR Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483 [TBL] [Abstract][Full Text] [Related]
10. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium. Khunnonkwao P; Jantama SS; Kanchanatawee S; Jantama K Appl Microbiol Biotechnol; 2018 Jan; 102(1):127-141. PubMed ID: 29079860 [TBL] [Abstract][Full Text] [Related]
11. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars. Kim J; Tremaine M; Grass JA; Purdy HM; Landick R; Kiley PJ; Reed JL Biotechnol J; 2019 Sep; 14(9):e1800441. PubMed ID: 31297978 [TBL] [Abstract][Full Text] [Related]
12. Efficient anaerobic consumption of D-xylose by E. coli BL21(DE3) via xylR adaptive mutation. Heo JM; Kim HJ; Lee SJ BMC Microbiol; 2021 Dec; 21(1):332. PubMed ID: 34872501 [TBL] [Abstract][Full Text] [Related]
13. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21. Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Fujiwara R; Noda S; Tanaka T; Kondo A Nat Commun; 2020 Jan; 11(1):279. PubMed ID: 31937786 [TBL] [Abstract][Full Text] [Related]
15. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Choi SY; Park SJ; Kim WJ; Yang JE; Lee H; Shin J; Lee SY Nat Biotechnol; 2016 Apr; 34(4):435-40. PubMed ID: 26950748 [TBL] [Abstract][Full Text] [Related]
16. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli. Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743 [TBL] [Abstract][Full Text] [Related]
17. Expression of acetaldehyde dehydrogenase (aldB) improved ethanol production from xylose by the ethanologenic Escherichia coli RM10. Manow R; Wang C; Garza E; Zhao X; Wang J; Grayburn S; Zhou S World J Microbiol Biotechnol; 2020 Mar; 36(4):59. PubMed ID: 32236784 [TBL] [Abstract][Full Text] [Related]
18. [Production of L-lactic acid from pentose by a genetically engineered Escherichia coli]. Zhao J; Xu L; Wang Y; Zhao X; Wang J Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):328-37. PubMed ID: 23858707 [TBL] [Abstract][Full Text] [Related]
19. Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli. Koita K; Rao CV PLoS One; 2012; 7(8):e43700. PubMed ID: 22952739 [TBL] [Abstract][Full Text] [Related]
20. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]