BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22885222)

  • 1. Evidences for a role of glutathione peroxidase 4 (GPx4) in methylmercury induced neurotoxicity in vivo.
    Zemolin AP; Meinerz DF; de Paula MT; Mariano DO; Rocha JB; Pereira AB; Posser T; Franco JL
    Toxicology; 2012 Dec; 302(1):60-7. PubMed ID: 22885222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ different antioxidative systems contribute to the site-specific methylmercury neurotoxicity in mice.
    Fujimura M; Usuki F
    Toxicology; 2017 Dec; 392():55-63. PubMed ID: 29030019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex- and structure-specific differences in antioxidant responses to methylmercury during early development.
    Ruszkiewicz JA; Bowman AB; Farina M; Rocha JBT; Aschner M
    Neurotoxicology; 2016 Sep; 56():118-126. PubMed ID: 27456245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells.
    Farina M; Campos F; Vendrell I; Berenguer J; Barzi M; Pons S; Suñol C
    Toxicol Sci; 2009 Dec; 112(2):416-26. PubMed ID: 19770487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low in situ expression of antioxidative enzymes in rat cerebellar granular cells susceptible to methylmercury.
    Fujimura M; Usuki F
    Arch Toxicol; 2014 Jan; 88(1):109-13. PubMed ID: 23832298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebellar thiol status and motor deficit after lactational exposure to methylmercury.
    Franco JL; Teixeira A; Meotti FC; Ribas CM; Stringari J; Garcia Pomblum SC; Moro AM; Bohrer D; Bairros AV; Dafre AL; Santos AR; Farina M
    Environ Res; 2006 Sep; 102(1):22-8. PubMed ID: 16564521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diphenyl diselenide protects against methylmercury-induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: a comparison with ebselen.
    Meinerz DF; Branco V; Aschner M; Carvalho C; Rocha JBT
    J Appl Toxicol; 2017 Sep; 37(9):1073-1081. PubMed ID: 28383113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupted pro- and antioxidative balance as a mechanism of neurotoxicity induced by perinatal exposure to lead.
    Baranowska-Bosiacka I; Gutowska I; Marchlewicz M; Marchetti C; Kurzawski M; Dziedziejko V; Kolasa A; Olszewska M; Rybicka M; Safranow K; Nowacki P; Wiszniewska B; Chlubek D
    Brain Res; 2012 Jan; 1435():56-71. PubMed ID: 22197700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of methylmercury exposure on behavior and biomarkers of oxidative stress in adult mice.
    Kirkpatrick M; Benoit J; Everett W; Gibson J; Rist M; Fredette N
    Neurotoxicology; 2015 Sep; 50():170-8. PubMed ID: 26151194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury and selenium interaction in vivo: effects on thioredoxin reductase and glutathione peroxidase.
    Branco V; Canário J; Lu J; Holmgren A; Carvalho C
    Free Radic Biol Med; 2012 Feb; 52(4):781-93. PubMed ID: 22198265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on methylmercury-induced locomotor deficits and cerebellar toxicity in mice.
    Carvalho MC; Franco JL; Ghizoni H; Kobus K; Nazari EM; Rocha JB; Nogueira CW; Dafre AL; Müller YM; Farina M
    Toxicology; 2007 Oct; 239(3):195-203. PubMed ID: 17703864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroprotective Effect of Portulaca oleraceae Ethanolic Extract Ameliorates Methylmercury Induced Cognitive Dysfunction and Oxidative Stress in Cerebellum and Cortex of Rat Brain.
    Sumathi T; Christinal J
    Biol Trace Elem Res; 2016 Jul; 172(1):155-165. PubMed ID: 26563420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of inorganic selenium administration in methylmercury-induced neurotoxicity in mouse cerebral cortex.
    Glaser V; Nazari EM; Müller YM; Feksa L; Wannmacher CM; Rocha JB; de Bem AF; Farina M; Latini A
    Int J Dev Neurosci; 2010 Nov; 28(7):631-7. PubMed ID: 20620206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methionine stimulates motor impairment and cerebellar mercury deposition in methylmercury-exposed mice.
    Zimmermann LT; dos Santos DB; Colle D; dos Santos AA; Hort MA; Garcia SC; Bressan LP; Bohrer D; Farina M
    J Toxicol Environ Health A; 2014; 77(1-3):46-56. PubMed ID: 24555646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diphenyl ditelluride targets brain selenoproteins in vivo: inhibition of cerebral thioredoxin reductase and glutathione peroxidase in mice after acute exposure.
    Comparsi B; Meinerz DF; Franco JL; Posser T; Prestes Ade S; Stefanello ST; dos Santos DB; Wagner C; Farina M; Aschner M; Dafre AL; Rocha JB
    Mol Cell Biochem; 2012 Nov; 370(1-2):173-82. PubMed ID: 22886391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylmercury exposure for 14 days (short-term) produces behavioral and biochemical changes in mouse cerebellum, liver, and serum.
    Macedo-Júnior SJ; Luiz-Cerutti M; Nascimento DB; Farina M; Soares Santos AR; de Azevedo Maia AH
    J Toxicol Environ Health A; 2017; 80(19-21):1145-1155. PubMed ID: 28850017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice.
    de Freitas AS; Funck VR; Rotta Mdos S; Bohrer D; Mörschbächer V; Puntel RL; Nogueira CW; Farina M; Aschner M; Rocha JB
    Brain Res Bull; 2009 Apr; 79(1):77-84. PubMed ID: 19047014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure.
    Usuki F; Yamashita A; Fujimura M
    J Biol Chem; 2011 Feb; 286(8):6641-9. PubMed ID: 21106535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maternal milk as methylmercury source for suckling mice: neurotoxic effects involved with the cerebellar glutamatergic system.
    Manfroi CB; Schwalm FD; Cereser V; Abreu F; Oliveira A; Bizarro L; Rocha JB; Frizzo ME; Souza DO; Farina M
    Toxicol Sci; 2004 Sep; 81(1):172-8. PubMed ID: 15201443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats.
    Chaudhary S; Parvez S
    Neuroscience; 2012 Dec; 225():258-68. PubMed ID: 22960313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.