BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 22885407)

  • 1. Digital music exposure reliably induces temporary threshold shift in normal-hearing human subjects.
    Le Prell CG; Dell S; Hensley B; Hall JW; Campbell KC; Antonelli PJ; Green GE; Miller JM; Guire K
    Ear Hear; 2012; 33(6):e44-58. PubMed ID: 22885407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk Assessment of Recreational Noise-Induced Hearing Loss from Exposure through a Personal Audio System-iPod Touch.
    Gopal KV; Mills LE; Phillips BS; Nandy R
    J Am Acad Audiol; 2019; 30(7):619-633. PubMed ID: 30395532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of otoacoustic emissions following ear-level exposure to MP3 player music.
    Bhagat SP; Davis AM
    Int J Audiol; 2008 Dec; 47(12):751-60. PubMed ID: 19085399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No Reliable Association Between Recreational Noise Exposure and Threshold Sensitivity, Distortion Product Otoacoustic Emission Amplitude, or Word-in-Noise Performance in a College Student Population.
    Le Prell CG; Siburt HW; Lobarinas E; Griffiths SK; Spankovich C
    Ear Hear; 2018; 39(6):1057-1074. PubMed ID: 29543608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Otoacoustic emissions before and after listening to music on a personal player.
    Trzaskowski B; Jędrzejczak WW; Piłka E; Cieślicka M; Skarżyński H
    Med Sci Monit; 2014 Aug; 20():1426-31. PubMed ID: 25116920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: time course of recovery and effects of lowering L2.
    Sutton LA; Lonsbury-Martin BL; Martin GK; Whitehead ML
    Hear Res; 1994 May; 75(1-2):161-74. PubMed ID: 8071143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Validation of an Efficient and Safe Loud Music Exposure Paradigm.
    Iliadou E; Pastiadis K; Dimitriadis D; Plack CJ; Bibas A
    J Speech Lang Hear Res; 2024 Feb; 67(2):668-679. PubMed ID: 38295290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the olivocochlear efferent reflex strength in the susceptibility to temporary hearing deterioration after music exposure in young adults.
    Hannah K; Ingeborg D; Leen M; Annelies B; Birgit P; Freya S; Bart V
    Noise Health; 2014; 16(69):108-15. PubMed ID: 24804715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporary threshold shift after impulse-noise during video game play: laboratory data.
    Spankovich C; Griffiths SK; Lobariñas E; Morgenstein KE; de la Calle S; Ledon V; Guercio D; Le Prell CG
    Int J Audiol; 2014 Mar; 53 Suppl 2(0 2):S53-65. PubMed ID: 24564694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of three hours of discotheque music on pure-tone thresholds and distortion product otoacoustic emissions.
    Müller J; Dietrich S; Janssen T
    J Acoust Soc Am; 2010 Oct; 128(4):1853-69. PubMed ID: 20968358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexposure effects of a 1-kHz tone on the distortion product otoacoustic emission in humans.
    Reuter K; Ordoñez R; Hammershoi D
    J Acoust Soc Am; 2007 Jul; 122(1):378-86. PubMed ID: 17614497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serum Prestin Level May Increase Following Music Exposure That Induces Temporary Threshold Shifts: A Pilot Study.
    Iliadou E; Plack CJ; Pastiadis K; Bibas A
    Ear Hear; 2024 Jul-Aug 01; 45(4):1059-1069. PubMed ID: 38488693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The correlation between hair and eye colour and contralateral suppression of otoacoustic emissions.
    Klopper M; Biagio-de Jager L; Vinck B
    Noise Health; 2019; 21(101):155-163. PubMed ID: 32719302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of noise exposure during solitary trumpet playing: immediate impact on distortion-product otoacoustic emissions and long-term implications for hearing.
    Poissant SF; Freyman RL; MacDonald AJ; Nunes HA
    Ear Hear; 2012; 33(4):543-53. PubMed ID: 22531575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of digital music files for use in human temporary threshold shift studies.
    Le Prell CG; Yang Q; Harris JG
    J Acoust Soc Am; 2011 Oct; 130(4):EL142-6. PubMed ID: 21974483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparison of methods for early detection of noise vulnerability of the inner ear. Amplitude reduction of otoacoustic emissions are most sensitive at submaximal noise impulse exposure].
    Plinkert PK; Hemmert W; Zenner HP
    HNO; 1995 Feb; 43(2):89-97. PubMed ID: 7713771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of usage of personal music systems on oto-acoustic emissions among medical students.
    Narahari PG; Bhat J; Nambi A; Arora A
    Noise Health; 2017; 19(90):222-226. PubMed ID: 28937016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting sensitivity of distortion-product otoacoustic emissions to ototoxic hearing loss.
    Reavis KM; Phillips DS; Fausti SA; Gordon JS; Helt WJ; Wilmington D; Bratt GW; Konrad-Martin D
    Ear Hear; 2008 Dec; 29(6):875-93. PubMed ID: 18753950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hearing and loud music exposure in a group of adolescents at the ages of 14-15 and retested at 17-18.
    Biassoni EC; Serra MR; Hinalaf M; Abraham M; Pavlik M; Villalobo JP; Curet C; Joekes S; Yacci MR; Righetti A
    Noise Health; 2014; 16(72):331-41. PubMed ID: 25209043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product otoacoustic mapping measured pre- and post-loud sound exposures.
    Brooks CA; Clavier OH; Fellows AM; Rieke CC; Niemczak CE; Gui J; Pryor NJ; Gallagher HL; Murphy SA; Wise SR; Healy-Leavitt C; Allen LV; Buckey JC
    Int J Audiol; 2022 Mar; 61(3):187-196. PubMed ID: 34107827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.