These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22885577)

  • 1. Fabrication of molded chalcogenide-glass lens for thermal imaging applications.
    Cha du H; Kim HJ; Hwang Y; Jeong JC; Kim JH
    Appl Opt; 2012 Aug; 51(23):5649-56. PubMed ID: 22885577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications.
    Cha du H; Kim HJ; Park HS; Hwang Y; Kim JH; Hong JH; Lee KS
    Appl Opt; 2010 Mar; 49(9):1607-13. PubMed ID: 20300157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Relations Between the Mechanical Properties and the Nano Crystalline in Chalcogenide Glass System.
    Choi JH; Lee JH; Choi YG; Kim JH; Kim HJ
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1603-6. PubMed ID: 27433629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transferability of Diffractive Structure in the Compression Molding of Chalcogenide Glass.
    Son BR; Kim JK; Choi YS; Park C
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of the Refractive Index Variation and Validation of the Form Deviation in Precisely Molded Chalcogenide Glass Lenses (IRG 26) Considering the Stress and Structure Relaxation.
    Jiang C; Tovar CM; Staasmeyer JH; Friedrichs M; Grunwald T; Bergs T
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of thermoforming mechanism and optical properties' change of chalcogenide glass in precision glass molding.
    Zhang L; Zhou W; Yi AY
    Appl Opt; 2018 Aug; 57(22):6358-6368. PubMed ID: 30117863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays via Combining Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes.
    Zhang F; Yang Q; Bian H; Li M; Hou X; Chen F
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of index change in compression molding of As
    Zhang L; Zhou W; Naples NJ; Yi AY
    Appl Opt; 2018 May; 57(15):4245-4252. PubMed ID: 29791401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of multispectral chalcogenide glass for large-size fabrication.
    Yang L; Liu H; Dai S; Lin C
    Opt Lett; 2023 Mar; 48(6):1431-1433. PubMed ID: 36946945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis on the instability of the surface profiles of precision molding chalcogenide glass aspherical lenses in mass production.
    Liu Y; Xue C; Sun G; Zhang G
    Opt Express; 2023 Sep; 31(19):31158-31176. PubMed ID: 37710642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Refractive Index GRIN Lens for IR Optics.
    Kang Y; Wang J; Zhao Y; Zhao X; Tao H; Xu Y
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics.
    Zhou T; Zhu Z; Liu X; Liang Z; Wang X
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges.
    Carlie N; Musgraves JD; Zdyrko B; Luzinov I; Hu J; Singh V; Agarwal A; Kimerling LC; Canciamilla A; Morichetti F; Melloni A; Richardson K
    Opt Express; 2010 Dec; 18(25):26728-43. PubMed ID: 21165023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Interfacial Adhesion and Re-Ir Alloy Coating in Chalcogenide Glass Molding.
    Zhu Z; Zhou T; Yu Q; Wang X; Xie J; Yan T; Ruan H; Cheung C
    Langmuir; 2023 Jul; 39(28):9924-9931. PubMed ID: 37369105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic.
    Hung KY; Fan CC; Tseng FG; Chen YK
    Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation Analysis of the Glass Preform in the Progress of Precision Glass Molding for Fabricating Chalcogenide Glass Diffractive Optics with the Finite Element Method.
    Liu Y; Xing Y; Fu H; Li C; Yang C; Cao B; Xue C
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass.
    Yamada I; Yamashita N; Tani K; Einishi T; Saito M; Fukumi K; Nishii J
    Opt Lett; 2011 Oct; 36(19):3882-4. PubMed ID: 21964129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface defect analysis on formed chalcogenide glass Ge
    Zhou T; Zhou Q; Xie J; Liu X; Wang X; Ruan H
    Appl Opt; 2017 Oct; 56(30):8394-8402. PubMed ID: 29091618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chalcogenide photonics: fabrication, devices and applications. Introduction.
    Eggleton BJ
    Opt Express; 2010 Dec; 18(25):26632-4. PubMed ID: 21165013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass formation and properties of Ge-Te-BiI3 far infrared transmitting chalcohalide glasses.
    Sun J; Nie Q; Wang X; Dai S; Xu T; Wang G
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):904-8. PubMed ID: 21550299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.