BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 22885596)

  • 1. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon--a review.
    Delgado LF; Charles P; Glucina K; Morlay C
    Sci Total Environ; 2012 Oct; 435-436():509-25. PubMed ID: 22885596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSAR-like models: a potential tool for the selection of PhACs and EDCs for monitoring purposes in drinking water treatment systems--a review.
    Delgado LF; Charles P; Glucina K; Morlay C
    Water Res; 2012 Dec; 46(19):6196-209. PubMed ID: 23040564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.
    Jung C; Park J; Lim KH; Park S; Heo J; Her N; Oh J; Yun S; Yoon Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():702-10. PubMed ID: 24231319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison and modeling of the adsorption of two microcystin analogues onto powdered activated carbon.
    Cook D; Newcombe G
    Environ Technol; 2008 May; 29(5):525-34. PubMed ID: 18661736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant.
    Padhye LP; Yao H; Kung'u FT; Huang CH
    Water Res; 2014 Mar; 51():266-76. PubMed ID: 24262763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies.
    Ho L; Lambling P; Bustamante H; Duker P; Newcombe G
    Water Res; 2011 Apr; 45(9):2954-64. PubMed ID: 21459402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of emerging contaminants in a drinking water treatment plant using electrodialysis reversal technology.
    Gabarrón S; Gernjak W; Valero F; Barceló A; Petrovic M; Rodríguez-Roda I
    J Hazard Mater; 2016 May; 309():192-201. PubMed ID: 26894293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan.
    Wu Q; Shi H; Adams CD; Timmons T; Ma Y
    Sci Total Environ; 2012 Nov; 439():18-25. PubMed ID: 23059968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of microcystin-LR from spiked water using either activated carbon or anthracite as filter material.
    Drogui P; Daghrir R; Simard MC; Sauvageau C; Blais JF
    Environ Technol; 2012; 33(4-6):381-91. PubMed ID: 22629609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorptive removal of endocrine-disrupting compounds and a pharmaceutical using activated charcoal from aqueous solution: kinetics, equilibrium, and mechanism studies.
    Zhao Y; Cho CW; Cui L; Wei W; Cai J; Wu G; Yun YS
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33897-33905. PubMed ID: 29959733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A coagulation-powdered activated carbon-ultrafiltration--multiple barrier approach for removing toxins from two Australian cyanobacterial blooms.
    Dixon MB; Richard Y; Ho L; Chow CW; O'Neill BK; Newcombe G
    J Hazard Mater; 2011 Feb; 186(2-3):1553-9. PubMed ID: 21227576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.
    Zhang H; Zhu G; Jia X; Ding Y; Zhang M; Gao Q; Hu C; Xu S
    J Environ Sci (China); 2011; 23(12):1983-8. PubMed ID: 22432328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A QSAR-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons.
    Redding AM; Cannon FS; Snyder SA; Vanderford BJ
    Water Res; 2009 Aug; 43(15):3849-61. PubMed ID: 19592065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water.
    Chang HS; Choo KH; Lee B; Choi SJ
    J Hazard Mater; 2009 Dec; 172(1):1-12. PubMed ID: 19632774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Impact of organic matter in water on the adsorption of EDCS (BPA) onto granular activated carbon (GAC) from the view of molecular weight distribution].
    Li RY; Gao NY; Xu B; Zen WH; Zhao JF; Le LS
    Huan Jing Ke Xue; 2006 Dec; 27(12):2488-94. PubMed ID: 17304846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: A pilot-scale approach.
    McKie MJ; Andrews SA; Andrews RC
    Sci Total Environ; 2016 Feb; 544():10-7. PubMed ID: 26657244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.
    Nam SW; Choi DJ; Kim SK; Her N; Zoh KD
    J Hazard Mater; 2014 Apr; 270():144-52. PubMed ID: 24572271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials.
    Sotelo JL; Rodríguez AR; Mateos MM; Hernández SD; Torrellas SA; Rodríguez JG
    J Environ Sci Health B; 2012; 47(7):640-52. PubMed ID: 22560026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of emerging contaminants of concern by alternative adsorbents.
    Rossner A; Snyder SA; Knappe DR
    Water Res; 2009 Aug; 43(15):3787-96. PubMed ID: 19577267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling granular activated carbon adsorption with membrane bioreactor treatment for trace organic contaminant removal: breakthrough behaviour of persistent and hydrophilic compounds.
    Nguyen LN; Hai FI; Kang J; Price WE; Nghiem LD
    J Environ Manage; 2013 Apr; 119():173-81. PubMed ID: 23500020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.