BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22885600)

  • 1. A simple method to evaluate the biochemical compatibility of oil/surfactant mixtures for experiments in microdroplets.
    Kaltenbach M; Devenish SR; Hollfelder F
    Lab Chip; 2012 Oct; 12(20):4185-92. PubMed ID: 22885600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplets as reaction compartments for protein nanotechnology.
    Devenish SR; Kaltenbach M; Fischlechner M; Hollfelder F
    Methods Mol Biol; 2013; 996():269-86. PubMed ID: 23504430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays.
    Courtois F; Olguin LF; Whyte G; Theberge AB; Huck WT; Hollfelder F; Abell C
    Anal Chem; 2009 Apr; 81(8):3008-16. PubMed ID: 19284775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective droplet coalescence using microfluidic systems.
    Mazutis L; Griffiths AD
    Lab Chip; 2012 Apr; 12(10):1800-6. PubMed ID: 22453914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry.
    Smith CA; Li X; Mize TH; Sharpe TD; Graziani EI; Abell C; Huck WT
    Anal Chem; 2013 Apr; 85(8):3812-6. PubMed ID: 23514243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of microfluidic water-in-oil droplets in experimental biology.
    Schaerli Y; Hollfelder F
    Mol Biosyst; 2009 Dec; 5(12):1392-404. PubMed ID: 20023716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coalescence-assisted generation of single nanoliter droplets with predefined composition.
    Shemesh J; Nir A; Bransky A; Levenberg S
    Lab Chip; 2011 Oct; 11(19):3225-30. PubMed ID: 21826345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lab-on-a-chip in vitro compartmentalization technologies for protein studies.
    Zhu Y; Power BE
    Adv Biochem Eng Biotechnol; 2008; 110():81-114. PubMed ID: 18594785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of interfacial tension on droplet formation in flow-focusing microfluidic device.
    Peng L; Yang M; Guo SS; Liu W; Zhao XZ
    Biomed Microdevices; 2011 Jun; 13(3):559-64. PubMed ID: 21484446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic charging and control of droplets in microfluidic devices.
    Zhou H; Yao S
    Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Fluorophore Detection in Femtoliter Droplets Generated by Flow Focusing.
    Weinmeister R; Freeman E; Eperon IC; Stuart AM; Hudson AJ
    ACS Nano; 2015 Oct; 9(10):9718-30. PubMed ID: 26365461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme.
    Mazutis L; Baret JC; Treacy P; Skhiri Y; Araghi AF; Ryckelynck M; Taly V; Griffiths AD
    Lab Chip; 2009 Oct; 9(20):2902-8. PubMed ID: 19789742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method to quantify the amount of surfactant at the oil/water interface and to determine total interfacial area of emulsions.
    James-Smith MA; Alford K; Shah DO
    J Colloid Interface Sci; 2007 Jun; 310(2):590-8. PubMed ID: 17321537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNAP display: in vitro protein evolution in microdroplets.
    Kaltenbach M; Hollfelder F
    Methods Mol Biol; 2012; 805():101-11. PubMed ID: 22094803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics.
    Beneyton T; Coldren F; Baret JC; Griffiths AD; Taly V
    Analyst; 2014 Jul; 139(13):3314-23. PubMed ID: 24733162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic droplets: new integrated workflows for biological experiments.
    Kintses B; van Vliet LD; Devenish SR; Hollfelder F
    Curr Opin Chem Biol; 2010 Oct; 14(5):548-55. PubMed ID: 20869904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.