BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22885725)

  • 1. Characterizing the ex vivo textile and structural properties of synthetic prolapse mesh products.
    Feola A; Barone W; Moalli P; Abramowitch S
    Int Urogynecol J; 2013 Apr; 24(4):559-64. PubMed ID: 22885725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.
    Ulrich D; Edwards SL; Alexander DLJ; Rosamilia A; Werkmeister JA; Gargett CE; Letouzey V
    Am J Obstet Gynecol; 2016 Feb; 214(2):260.e1-260.e8. PubMed ID: 26348376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Textile properties of synthetic prolapse mesh in response to uniaxial loading.
    Barone WR; Moalli PA; Abramowitch SD
    Am J Obstet Gynecol; 2016 Sep; 215(3):326.e1-9. PubMed ID: 27001219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh.
    Feola A; Abramowitch S; Jallah Z; Stein S; Barone W; Palcsey S; Moalli P
    BJOG; 2013 Jan; 120(2):224-232. PubMed ID: 23240801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of clinical and newly fabricated meshes for pelvic organ prolapse repair.
    Edwards SL; Werkmeister JA; Rosamilia A; Ramshaw JA; White JF; Gargett CE
    J Mech Behav Biomed Mater; 2013 Jul; 23():53-61. PubMed ID: 23651550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaginal degeneration following implantation of synthetic mesh with increased stiffness.
    Liang R; Abramowitch S; Knight K; Palcsey S; Nolfi A; Feola A; Stein S; Moalli PA
    BJOG; 2013 Jan; 120(2):233-243. PubMed ID: 23240802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofibrous biomimetic mesh can be used for pelvic reconstructive surgery: A randomized study.
    Ding J; Deng M; Song XC; Chen C; Lai KL; Wang GS; Yuan YY; Xu T; Zhu L
    J Mech Behav Biomed Mater; 2016 Aug; 61():26-35. PubMed ID: 26820994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of prolapse mesh on vaginal smooth muscle structure and function.
    Jallah Z; Liang R; Feola A; Barone W; Palcsey S; Abramowitch SD; Yoshimura N; Moalli P
    BJOG; 2016 Jun; 123(7):1076-85. PubMed ID: 26301457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the host inflammatory response following implantation of prolapse mesh in rhesus macaque.
    Brown BN; Mani D; Nolfi AL; Liang R; Abramowitch SD; Moalli PA
    Am J Obstet Gynecol; 2015 Nov; 213(5):668.e1-10. PubMed ID: 26259906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of prolapse meshes on the metabolism of vaginal extracellular matrix in rhesus macaque.
    Liang R; Zong W; Palcsey S; Abramowitch S; Moalli PA
    Am J Obstet Gynecol; 2015 Feb; 212(2):174.e1-7. PubMed ID: 25128444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile properties of commonly used prolapse meshes.
    Jones KA; Feola A; Meyn L; Abramowitch SD; Moalli PA
    Int Urogynecol J Pelvic Floor Dysfunct; 2009 Jul; 20(7):847-53. PubMed ID: 19495548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniaxial biomechanical properties of seven different vaginally implanted meshes for pelvic organ prolapse.
    Shepherd JP; Feola AJ; Abramowitch SD; Moalli PA
    Int Urogynecol J; 2012 May; 23(5):613-20. PubMed ID: 22120887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical properties of synthetic surgical meshes for pelvic prolapse repair.
    Todros S; Pavan PG; Natali AN
    J Mech Behav Biomed Mater; 2015 Mar; 55():271-285. PubMed ID: 26615384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of polypropylene prolapse mesh on vaginal smooth muscle in rhesus macaque.
    Shaffer RM; Liang R; Knight K; Carter-Brooks CM; Abramowitch S; Moalli PA
    Am J Obstet Gynecol; 2019 Oct; 221(4):330.e1-330.e9. PubMed ID: 31102587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surgical management of pelvic organ prolapse in women.
    Maher C; Feiner B; Baessler K; Schmid C
    Cochrane Database Syst Rev; 2013 Apr; (4):CD004014. PubMed ID: 23633316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesh deformation: A mechanism underlying polypropylene prolapse mesh complications in vivo.
    Knight KM; King GE; Palcsey SL; Suda A; Liang R; Moalli PA
    Acta Biomater; 2022 Aug; 148():323-335. PubMed ID: 35671876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh.
    Li X; Kruger JA; Jor JW; Wong V; Dietz HP; Nash MP; Nielsen PM
    J Mech Behav Biomed Mater; 2014 Sep; 37():48-55. PubMed ID: 24942626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The in vivo biocompatibility of titanized polypropylene lightweight mesh is superior to that of conventional polypropylene mesh.
    Ai FF; Mao M; Zhang Y; Kang J; Zhu L
    Neurourol Urodyn; 2020 Jan; 39(1):96-107. PubMed ID: 31584215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The challenge of stress incontinence and pelvic organ prolapse: revisiting biologic mesh materials.
    D'Angelo W; Dziki J; Badylak SF
    Curr Opin Urol; 2019 Jul; 29(4):437-442. PubMed ID: 31083010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating Alternative Materials for the Treatment of Stress Urinary Incontinence and Pelvic Organ Prolapse: A Comparison of the In Vivo Response to Meshes Implanted in Rabbits.
    Roman S; Urbánková I; Callewaert G; Lesage F; Hillary C; Osman NI; Chapple CR; Deprest J; MacNeil S
    J Urol; 2016 Jul; 196(1):261-9. PubMed ID: 26880411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.