BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22885850)

  • 21. Compensatory rapid switching of binasal inputs in the olfactory cortex.
    Kikuta S; Kashiwadani H; Mori K
    J Neurosci; 2008 Nov; 28(46):11989-97. PubMed ID: 19005064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans.
    Small DM; Gerber JC; Mak YE; Hummel T
    Neuron; 2005 Aug; 47(4):593-605. PubMed ID: 16102541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Configural and elemental coding of natural odor mixture components in the human brain.
    Howard JD; Gottfried JA
    Neuron; 2014 Nov; 84(4):857-69. PubMed ID: 25453843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cognitive modulation of olfactory processing.
    de Araujo IE; Rolls ET; Velazco MI; Margot C; Cayeux I
    Neuron; 2005 May; 46(4):671-9. PubMed ID: 15944134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Function follows form: ecological constraints on odor codes and olfactory percepts.
    Gottfried JA
    Curr Opin Neurobiol; 2009 Aug; 19(4):422-9. PubMed ID: 19671493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex.
    O'Doherty J; Rolls ET; Francis S; Bowtell R; McGlone F; Kobal G; Renner B; Ahne G
    Neuroreport; 2000 Mar; 11(4):893-7. PubMed ID: 10757540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. fMRI-based Neuronal Response to New Odorants in the Newborn Brain.
    Adam-Darque A; Grouiller F; Vasung L; Ha-Vinh Leuchter R; Pollien P; Lazeyras F; Hüppi PS
    Cereb Cortex; 2018 Aug; 28(8):2901-2907. PubMed ID: 29106509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding.
    Tantirigama ML; Huang HH; Bekkers JM
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2407-2412. PubMed ID: 28196887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissociated neural representations of intensity and valence in human olfaction.
    Anderson AK; Christoff K; Stappen I; Panitz D; Ghahremani DG; Glover G; Gabrieli JD; Sobel N
    Nat Neurosci; 2003 Feb; 6(2):196-202. PubMed ID: 12536208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arc visualization of odor objects reveals experience-dependent ensemble sharpening, separation, and merging in anterior piriform cortex in adult rat.
    Shakhawat AM; Harley CW; Yuan Q
    J Neurosci; 2014 Jul; 34(31):10206-10. PubMed ID: 25080582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues.
    Li W; Howard JD; Parrish TB; Gottfried JA
    Science; 2008 Mar; 319(5871):1842-5. PubMed ID: 18369149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Odorant deprivation reversibly modulates transsynaptic changes in the NR2B-mediated CREB pathway in mouse piriform cortex.
    Kim HH; Puche AC; Margolis FL
    J Neurosci; 2006 Sep; 26(37):9548-59. PubMed ID: 16971539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experience induces functional reorganization in brain regions involved in odor imagery in perfumers.
    Plailly J; Delon-Martin C; Royet JP
    Hum Brain Mapp; 2012 Jan; 33(1):224-34. PubMed ID: 21391264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experience-dependent neural integration of taste and smell in the human brain.
    Small DM; Voss J; Mak YE; Simmons KB; Parrish T; Gitelman D
    J Neurophysiol; 2004 Sep; 92(3):1892-903. PubMed ID: 15102894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain.
    de Araujo IE; Rolls ET; Kringelbach ML; McGlone F; Phillips N
    Eur J Neurosci; 2003 Oct; 18(7):2059-68. PubMed ID: 14622239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.
    Zavitz D; Youngstrom IA; Borisyuk A; Wachowiak M
    J Neurosci; 2020 Jul; 40(31):5954-5969. PubMed ID: 32561671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of olfactory information in the human brain using 7-Tesla functional magnetic resonance imaging.
    Donoshita Y; Choi US; Ban H; Kida I
    Neuroimage; 2021 Aug; 236():118212. PubMed ID: 34082117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Odor maps in the olfactory cortex.
    Zou Z; Li F; Buck LB
    Proc Natl Acad Sci U S A; 2005 May; 102(21):7724-9. PubMed ID: 15911779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Odor representations from the two nostrils are temporally segregated in human piriform cortex.
    Dikeçligil GN; Yang AI; Sanghani N; Lucas T; Chen HI; Davis KA; Gottfried JA
    Curr Biol; 2023 Dec; 33(24):5275-5287.e5. PubMed ID: 37924807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.
    Samuelsen CL; Fontanini A
    J Neurosci; 2017 Jan; 37(2):244-257. PubMed ID: 28077705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.