These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22886207)

  • 41. Modeling and simulation of current-clamp electroporation.
    Gurunian A; Dean DA
    Bioelectrochemistry; 2022 Oct; 147():108162. PubMed ID: 35691267
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols.
    Casciola M; Bonhenry D; Liberti M; Apollonio F; Tarek M
    Bioelectrochemistry; 2014 Dec; 100():11-7. PubMed ID: 24731593
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers.
    Vernier PT; Ziegler MJ
    J Phys Chem B; 2007 Nov; 111(45):12993-6. PubMed ID: 17949035
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime.
    Levine ZA; Vernier PT
    J Membr Biol; 2012 Oct; 245(10):599-610. PubMed ID: 22815071
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transient potential gradients and impedance measures of tethered bilayer lipid membranes: pore-forming peptide insertion and the effect of electroporation.
    Cranfield CG; Cornell BA; Grage SL; Duckworth P; Carne S; Ulrich AS; Martinac B
    Biophys J; 2014 Jan; 106(1):182-9. PubMed ID: 24411250
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Permeabilizing Phospholipid Bilayers with Non-normal Electric Fields.
    Castellani F; Teissié J; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):229-236. PubMed ID: 29094194
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electroporation of a lipid bilayer as a chemical reaction.
    Bier M; Gowrishankar TR; Chen W; Lee RC
    Bioelectromagnetics; 2004 Dec; 25(8):634-7. PubMed ID: 15515028
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Membrane electroporation: a molecular dynamics simulation.
    Tarek M
    Biophys J; 2005 Jun; 88(6):4045-53. PubMed ID: 15764667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation.
    Levine ZA; Vernier PT
    J Membr Biol; 2010 Jul; 236(1):27-36. PubMed ID: 20623350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular dynamics insights on temperature and pressure effects on electroporation.
    Müller WA; Sarkis JR; Marczak LDF; Muniz AR
    Biochim Biophys Acta Biomembr; 2022 Dec; 1864(12):184049. PubMed ID: 36113558
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ionic conductivity of electroporated lipid bilayer membranes.
    Kakorin S; Neumann E
    Bioelectrochemistry; 2002 May; 56(1-2):163-6. PubMed ID: 12009466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
    Yusupov M; Van der Paal J; Neyts EC; Bogaerts A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):839-847. PubMed ID: 28137619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular Simulation of Cell Membrane Deformation by Picosecond Intense Electric Pulse.
    Petrishia A; Sasikala M
    J Membr Biol; 2015 Dec; 248(6):1015-20. PubMed ID: 26054382
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of electroporation sites in the complex lipid organization of the plasma membrane.
    Rems L; Tang X; Zhao F; Pérez-Conesa S; Testa I; Delemotte L
    Elife; 2022 Feb; 11():. PubMed ID: 35195069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural Characterization of a Cation-Selective, Self-Assembled Peptide Pore in Planar Phospholipid Bilayers.
    Deplazes E; Hartmann LM; Cranfield CG; Garcia A
    J Phys Chem Lett; 2020 Oct; 11(19):8152-8156. PubMed ID: 32902292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluations of a mechanistic hypothesis for the influence of extracellular ions on electroporation due to high-intensity, nanosecond pulsing.
    Sridhara V; Joshi RP
    Biochim Biophys Acta; 2014 Jul; 1838(7):1793-800. PubMed ID: 24680651
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Establishing an Electrostatics Paradigm for Membrane Electroporation in the Framework of Dissipative Particle Dynamics.
    Vaiwala R; Jadhav S; Thaokar R
    J Chem Theory Comput; 2019 Oct; 15(10):5737-5749. PubMed ID: 31430431
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The good and the bad of cell membrane electroporation.
    Balantič K; Miklavčič D; Križaj I; Kramar P
    Acta Chim Slov; 2021 Dec; 68(4):753-764. PubMed ID: 34918751
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation.
    Sharma V; Stebe K; Murphy JC; Tung L
    Biophys J; 1996 Dec; 71(6):3229-41. PubMed ID: 8968593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.