These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 22886582)

  • 1. Complement component 4 copy number variation and CYP21A2 genotype associations in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
    Chen W; Xu Z; Nishitani M; Van Ryzin C; McDonnell NB; Merke DP
    Hum Genet; 2012 Dec; 131(12):1889-94. PubMed ID: 22886582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes and Pseudogenes: Complexity of the RCCX Locus and Disease.
    Carrozza C; Foca L; De Paolis E; Concolino P
    Front Endocrinol (Lausanne); 2021; 12():709758. PubMed ID: 34394006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complement component 4 variations may influence psychopathology risk in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
    Lao Q; Jardin MD; Jayakrishnan R; Ernst M; Merke DP
    Hum Genet; 2018 Dec; 137(11-12):955-960. PubMed ID: 30465166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficiencies of human complement component C4A and C4B and heterozygosity in length variants of RP-C4-CYP21-TNX (RCCX) modules in caucasians. The load of RCCX genetic diversity on major histocompatibility complex-associated disease.
    Blanchong CA; Zhou B; Rupert KL; Chung EK; Jones KN; Sotos JF; Zipf WB; Rennebohm RM; Yung Yu C
    J Exp Med; 2000 Jun; 191(12):2183-96. PubMed ID: 10859342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular variations of the human major histocompatibility complex class III genes for serine/threonine kinase RP, complement component C4, steroid 21-hydroxylase CYP21, and tenascin TNX (the RCCX module). A mechanism for gene deletions and disease associations.
    Yang Z; Mendoza AR; Welch TR; Zipf WB; Yu CY
    J Biol Chem; 1999 Apr; 274(17):12147-56. PubMed ID: 10207042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rational, non-radioactive strategy for the molecular diagnosis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
    Coeli-Lacchini FB; Turatti W; Elias PC; Elias LL; Martinelli CE; Moreira AC; Antonini SR; de Castro M
    Gene; 2013 Sep; 526(2):239-45. PubMed ID: 23570880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the association of HLA alleles and haplotypes with CYP21A2 mutations in a large cohort of patients with congenital adrenal hyperplasia.
    Jayakrishnan R; Lao Q; Adams SD; Ward WW; Merke DP
    Gene; 2019 Mar; 687():30-34. PubMed ID: 30419250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique haplotype of RCCX copy number variation: from the clinics of congenital adrenal hyperplasia to evolutionary genetics.
    Doleschall M; Luczay A; Koncz K; Hadzsiev K; Erhardt É; Szilágyi Á; Doleschall Z; Németh K; Török D; Prohászka Z; Gereben B; Fekete G; Gláz E; Igaz P; Korbonits M; Tóth M; Rácz K; Patócs A
    Eur J Hum Genet; 2017 Jun; 25(6):702-710. PubMed ID: 28401898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Great genotypic and phenotypic diversities associated with copy-number variations of complement C4 and RP-C4-CYP21-TNX (RCCX) modules: a comparison of Asian-Indian and European American populations.
    Saxena K; Kitzmiller KJ; Wu YL; Zhou B; Esack N; Hiremath L; Chung EK; Yang Y; Yu CY
    Mol Immunol; 2009 Apr; 46(7):1289-303. PubMed ID: 19135723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis of copy number variation of
    Gao YJ; Yu BQ; Lu L; Wu XY; Mao JF; Wang X; Tong AL; Chen S; Nie M
    Zhonghua Yi Xue Za Zhi; 2019 Dec; 99(48):3765-3769. PubMed ID: 31874511
    [No Abstract]   [Full Text] [Related]  

  • 11. Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
    Finkielstain GP; Chen W; Mehta SP; Fujimura FK; Hanna RM; Van Ryzin C; McDonnell NB; Merke DP
    J Clin Endocrinol Metab; 2011 Jan; 96(1):E161-72. PubMed ID: 20926536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CYP21A2 gene mutations in congenital adrenal hyperplasia: genotype-phenotype correlation in Turkish children.
    Baş F; Kayserili H; Darendeliler F; Uyguner O; Günöz H; Yüksel Apak M; Atalar F; Bundak R; Wilson RC; New MI; Wollnik B; Saka N
    J Clin Res Pediatr Endocrinol; 2009; 1(3):116-28. PubMed ID: 21274396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel deletion alleles carrying CYP21A1P/A2 chimeric genes in Brazilian patients with 21-hydroxylase deficiency.
    Coeli FB; Soardi FC; Bernardi RD; de Araújo M; Paulino LC; Lau IF; Petroli RJ; de Lemos-Marini SH; Baptista MT; Guerra-Júnior G; de-Mello MP
    BMC Med Genet; 2010 Jun; 11():104. PubMed ID: 20587039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of serum tenascin-X in patients with congenital adrenal hyperplasia at risk for Ehlers-Danlos contiguous gene deletion syndrome CAH-X.
    Kolli V; Kim H; Rao H; Lao Q; Gaynor A; Milner JD; Merke DP
    BMC Res Notes; 2019 Oct; 12(1):711. PubMed ID: 31666125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Congenital Adrenal Hyperplasia and Ehlers-Danlos Syndrome.
    Marino R; Moresco A; Perez Garrido N; Ramirez P; Belgorosky A
    Front Endocrinol (Lausanne); 2022; 13():803226. PubMed ID: 35282436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tenascin-X haploinsufficiency associated with Ehlers-Danlos syndrome in patients with congenital adrenal hyperplasia.
    Merke DP; Chen W; Morissette R; Xu Z; Van Ryzin C; Sachdev V; Hannoush H; Shanbhag SM; Acevedo AT; Nishitani M; Arai AE; McDonnell NB
    J Clin Endocrinol Metab; 2013 Feb; 98(2):E379-87. PubMed ID: 23284009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spectrum of CYP21A2 mutations in Congenital Adrenal Hyperplasia in an Indian cohort.
    Khajuria R; Walia R; Bhansali A; Prasad R
    Clin Chim Acta; 2017 Jan; 464():189-194. PubMed ID: 27890570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive and specific real-time polymerase chain reaction assays to accurately determine copy number variations (CNVs) of human complement C4A, C4B, C4-long, C4-short, and RCCX modules: elucidation of C4 CNVs in 50 consanguineous subjects with defined HLA genotypes.
    Wu YL; Savelli SL; Yang Y; Zhou B; Rovin BH; Birmingham DJ; Nagaraja HN; Hebert LA; Yu CY
    J Immunol; 2007 Sep; 179(5):3012-25. PubMed ID: 17709516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt-wasting congenital adrenal hyperplasia phenotype as a result of the TNXA/TNXB chimera 1 (CAH-X CH-1) and the pathogenic IVS2-13A/C > G in CYP21A2 gene.
    Fanis P; Skordis N; Phylactou LA; Neocleous V
    Hormones (Athens); 2023 Mar; 22(1):71-77. PubMed ID: 36264454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of the CYP21A2 gene in Chinese patients with steroid 21-hydroxylase deficiency.
    Ma D; Chen Y; Sun Y; Yang B; Cheng J; Huang M; Zhang J; Zhang J; Hu P; Lin Y; Jiang T; Xu Z
    Clin Biochem; 2014 Apr; 47(6):455-63. PubMed ID: 24503005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.