BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22886599)

  • 1. In vivo impact of Dlx3 conditional inactivation in neural crest-derived craniofacial bones.
    Duverger O; Isaac J; Zah A; Hwang J; Berdal A; Lian JB; Morasso MI
    J Cell Physiol; 2013 Mar; 228(3):654-64. PubMed ID: 22886599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DLX3 regulates bone mass by targeting genes supporting osteoblast differentiation and mineral homeostasis in vivo.
    Isaac J; Erthal J; Gordon J; Duverger O; Sun HW; Lichtler AC; Stein GS; Lian JB; Morasso MI
    Cell Death Differ; 2014 Sep; 21(9):1365-76. PubMed ID: 24948010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osterix is required for cranial neural crest-derived craniofacial bone formation.
    Baek WY; Kim YJ; de Crombrugghe B; Kim JE
    Biochem Biophys Res Commun; 2013 Mar; 432(1):188-92. PubMed ID: 23313488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural crest deletion of Dlx3 leads to major dentin defects through down-regulation of Dspp.
    Duverger O; Zah A; Isaac J; Sun HW; Bartels AK; Lian JB; Berdal A; Hwang J; Morasso MI
    J Biol Chem; 2012 Apr; 287(15):12230-40. PubMed ID: 22351765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADAM10 is essential for cranial neural crest-derived maxillofacial bone development.
    Tan Y; Fu R; Liu J; Wu Y; Wang B; Jiang N; Nie P; Cao H; Yang Z; Fang B
    Biochem Biophys Res Commun; 2016 Jul; 475(4):308-14. PubMed ID: 27221046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation.
    Dobreva G; Chahrour M; Dautzenberg M; Chirivella L; Kanzler B; Fariñas I; Karsenty G; Grosschedl R
    Cell; 2006 Jun; 125(5):971-86. PubMed ID: 16751105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network.
    Hassan MQ; Tare RS; Lee SH; Mandeville M; Morasso MI; Javed A; van Wijnen AJ; Stein JL; Stein GS; Lian JB
    J Biol Chem; 2006 Dec; 281(52):40515-26. PubMed ID: 17060321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DSPP Is Essential for Normal Development of the Dental-Craniofacial Complex.
    Chen Y; Zhang Y; Ramachandran A; George A
    J Dent Res; 2016 Mar; 95(3):302-10. PubMed ID: 26503913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BRCA1 and BRCA2 tumor suppressors in neural crest cells are essential for craniofacial bone development.
    Kitami K; Kitami M; Kaku M; Wang B; Komatsu Y
    PLoS Genet; 2018 May; 14(5):e1007340. PubMed ID: 29718910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell autonomous roles of Nedd4 in craniofacial bone formation.
    Wiszniak S; Harvey N; Schwarz Q
    Dev Biol; 2016 Feb; 410(1):98-107. PubMed ID: 26681395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased bone density associated with DLX3 mutation in the tricho-dento-osseous syndrome.
    Haldeman RJ; Cooper LF; Hart TC; Phillips C; Boyd C; Lester GE; Wright JT
    Bone; 2004 Oct; 35(4):988-97. PubMed ID: 15454107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fgfr1 conditional-knockout in neural crest cells induces heterotopic chondrogenesis and osteogenesis in mouse frontal bones.
    Kawai M; Herrmann D; Fuchs A; Cheng S; Ferrer-Vaquer A; Götz R; Driller K; Neubüser A; Ohura K
    Med Mol Morphol; 2019 Sep; 52(3):156-163. PubMed ID: 30499042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ezh2 is required for neural crest-derived cartilage and bone formation.
    Schwarz D; Varum S; Zemke M; Schöler A; Baggiolini A; Draganova K; Koseki H; Schübeler D; Sommer L
    Development; 2014 Feb; 141(4):867-77. PubMed ID: 24496623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MOZ directs the distal-less homeobox gene expression program during craniofacial development.
    Vanyai HK; Garnham A; May RE; McRae HM; Collin C; Wilcox S; Smyth GK; Thomas T; Voss AK
    Development; 2019 Jul; 146(14):. PubMed ID: 31340933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel ciliopathic skull defect arising from excess neural crest.
    Tabler JM; Rice CP; Liu KJ; Wallingford JB
    Dev Biol; 2016 Sep; 417(1):4-10. PubMed ID: 27395007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone vs. fat: embryonic origin of progenitors determines response to androgen in adipocytes and osteoblasts.
    Wiren KM; Hashimoto JG; Semirale AA; Zhang XW
    Bone; 2011 Oct; 49(4):662-72. PubMed ID: 21704206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Senescence: novel insight into DLX3 mutations leading to enhanced bone formation in Tricho-Dento-Osseous syndrome.
    Zhao N; Han D; Liu H; Li Y; Wong SW; Cao Z; Xu J; Zhang X; Cai T; Wang Y; Feng H
    Sci Rep; 2016 Dec; 6():38680. PubMed ID: 27924851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indian hedgehog in craniofacial neural crest cells links to skeletal malocclusion by regulating associated cartilage formation and gene expression.
    Amano K; Okuzaki D; Aikawa T; Kogo M
    FASEB J; 2020 May; 34(5):6791-6807. PubMed ID: 32223017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concerted action of Msx1 and Msx2 in regulating cranial neural crest cell differentiation during frontal bone development.
    Han J; Ishii M; Bringas P; Maas RL; Maxson RE; Chai Y
    Mech Dev; 2007; 124(9-10):729-45. PubMed ID: 17693062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of Msx1 and Msx2 in neural crest reveals an unexpected role in suppressing heterotopic bone formation in the head.
    Roybal PG; Wu NL; Sun J; Ting MC; Schafer CA; Maxson RE
    Dev Biol; 2010 Jul; 343(1-2):28-39. PubMed ID: 20398647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.