These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 22886601)
1. Interactions between Clostridium beijerinckii and Geobacter metallireducens in co-culture fermentation with anthrahydroquinone-2, 6-disulfonate (AH2QDS) for enhanced biohydrogen production from xylose. Zhang X; Ye X; Finneran KT; Zilles JL; Morgenroth E Biotechnol Bioeng; 2013 Jan; 110(1):164-72. PubMed ID: 22886601 [TBL] [Abstract][Full Text] [Related]
2. Anthrahydroquinone-2,6,-disulfonate (AH2QDS) increases hydrogen molar yield and xylose utilization in growing cultures of Clostridium beijerinckii. Ye X; Morgenroth E; Zhang X; Finneran KT Appl Microbiol Biotechnol; 2011 Nov; 92(4):855-64. PubMed ID: 21947605 [TBL] [Abstract][Full Text] [Related]
3. Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens. Zhang X; Ye X; Guo B; Finneran KT; Zilles JL; Morgenroth E Bioresour Technol; 2013 Nov; 147():89-95. PubMed ID: 23994308 [TBL] [Abstract][Full Text] [Related]
4. Influence of reduced electron shuttling compounds on biological H2 production in the fermentative pure culture Clostridium beijerinckii. Hatch JL; Finneran KT Curr Microbiol; 2008 Mar; 56(3):268-73. PubMed ID: 18167025 [TBL] [Abstract][Full Text] [Related]
5. An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii. Zagrodnik R; Laniecki M Bioresour Technol; 2016 Jan; 200():1039-43. PubMed ID: 26602144 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. Zhao X; Xing D; Fu N; Liu B; Ren N Bioresour Technol; 2011 Sep; 102(18):8432-6. PubMed ID: 21421301 [TBL] [Abstract][Full Text] [Related]
7. Ferric iron and extracellular electron shuttling increase xylose utilization and butanol production during fermentation with multiple solventogenic bacteria. Popovic J; Ye X; Haluska A; Finneran KT Appl Microbiol Biotechnol; 2017 Nov; 101(21):8053-8061. PubMed ID: 28963627 [TBL] [Abstract][Full Text] [Related]
8. Biological hydrogen production from palm oil mill effluent (POME) by anaerobic consortia and Clostridium beijerinckii. Rosa D; Medeiros ABP; Martinez-Burgos WJ; do Nascimento JR; de Carvalho JC; Sydney EB; Soccol CR J Biotechnol; 2020 Nov; 323():17-23. PubMed ID: 32569792 [TBL] [Abstract][Full Text] [Related]
9. Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions. Mai S; Wang G; Wu P; Gu C; Liu H; Zhang J; Wang G Biotechnol Appl Biochem; 2017 Sep; 64(5):719-726. PubMed ID: 27306691 [TBL] [Abstract][Full Text] [Related]
10. Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens. Kwon MJ; Finneran KT Biodegradation; 2008 Sep; 19(5):705-15. PubMed ID: 18239998 [TBL] [Abstract][Full Text] [Related]
11. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
12. Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Qureshi N; Ezeji TC; Ebener J; Dien BS; Cotta MA; Blaschek HP Bioresour Technol; 2008 Sep; 99(13):5915-22. PubMed ID: 18061440 [TBL] [Abstract][Full Text] [Related]
13. Enhanced isopropanol and n-butanol production by supplying exogenous acetic acid via co-culturing two clostridium strains from cassava bagasse hydrolysate. Zhang S; Qu C; Huang X; Suo Y; Liao Z; Wang J J Ind Microbiol Biotechnol; 2016 Jul; 43(7):915-25. PubMed ID: 27116556 [TBL] [Abstract][Full Text] [Related]
14. Production of isopropyl and butyl esters by Clostridium mono-culture and co-culture. Cui Y; He J; Yang KL; Zhou K J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):543-550. PubMed ID: 32418085 [TBL] [Abstract][Full Text] [Related]
15. Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Survase SA; Jurgens G; van Heiningen A; Granström T Appl Microbiol Biotechnol; 2011 Sep; 91(5):1305-13. PubMed ID: 21573939 [TBL] [Abstract][Full Text] [Related]
16. [Effect of initial substrate concentrations and pH on hydrogen production from xylose with Clostridium butyricum T4]. Qiu J; Xu J; Ren N Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):887-91. PubMed ID: 19777817 [TBL] [Abstract][Full Text] [Related]
17. Mono- and co-substrate utilization kinetics using mono- and co-culture of Clostridium beijerinckii and Clostridium saccharoperbutylacetonicum. Nasr N; Gupta M; Hafez H; El Naggar MH; Nakhla G Bioresour Technol; 2017 Oct; 241():152-160. PubMed ID: 28554101 [TBL] [Abstract][Full Text] [Related]
18. Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture. Qiu C; Shi P; Xiao S; Sun L World J Microbiol Biotechnol; 2017 Jan; 33(1):7. PubMed ID: 27858340 [TBL] [Abstract][Full Text] [Related]
19. Insight into furfural-tolerant and hydrogen-producing microbial consortia: Mechanism of furfural tolerance and hydrogen production. Luo LL; Zhu MJ Bioresour Technol; 2024 Sep; 407():131141. PubMed ID: 39047800 [TBL] [Abstract][Full Text] [Related]
20. Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Seelert T; Ghosh D; Yargeau V Appl Microbiol Biotechnol; 2015 May; 99(9):4107-16. PubMed ID: 25728446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]