BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22886699)

  • 21. FGF23, Hypophosphatemia, and Emerging Treatments.
    Imel EA; Biggin A; Schindeler A; Munns CF
    JBMR Plus; 2019 Aug; 3(8):e10190. PubMed ID: 31485552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia.
    Haffner D; Emma F; Eastwood DM; Duplan MB; Bacchetta J; Schnabel D; Wicart P; Bockenhauer D; Santos F; Levtchenko E; Harvengt P; Kirchhoff M; Di Rocco F; Chaussain C; Brandi ML; Savendahl L; Briot K; Kamenicky P; Rejnmark L; Linglart A
    Nat Rev Nephrol; 2019 Jul; 15(7):435-455. PubMed ID: 31068690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FGF23 and its role in X-linked hypophosphatemia-related morbidity.
    Beck-Nielsen SS; Mughal Z; Haffner D; Nilsson O; Levtchenko E; Ariceta G; de Lucas Collantes C; Schnabel D; Jandhyala R; Mäkitie O
    Orphanet J Rare Dis; 2019 Feb; 14(1):58. PubMed ID: 30808384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FGF23 is synthesised locally by renal tubules and activates injury-primed fibroblasts.
    Smith ER; Tan SJ; Holt SG; Hewitson TD
    Sci Rep; 2017 Jun; 7(1):3345. PubMed ID: 28611350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel auditory ossicles membrane and the development of conductive hearing loss in Dmp1-null mice.
    Lv K; Huang H; Yi X; Chertoff ME; Li C; Yuan B; Hinton RJ; Feng JQ
    Bone; 2017 Oct; 103():39-46. PubMed ID: 28603080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition.
    Yamamoto H; Ramos-Molina B; Lick AN; Prideaux M; Albornoz V; Bonewald L; Lindberg I
    Bone; 2016 Mar; 84():120-130. PubMed ID: 26746780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sclerostin antibody (Scl-Ab) improves osteomalacia phenotype in dentin matrix protein 1(Dmp1) knockout mice with little impact on serum levels of phosphorus and FGF23.
    Ren Y; Han X; Jing Y; Yuan B; Ke H; Liu M; Feng JQ
    Matrix Biol; 2016; 52-54():151-161. PubMed ID: 26721590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Family with sequence similarity member 20C is the primary but not the only kinase for the small-integrin-binding ligand N-linked glycoproteins in bone.
    Yang X; Yan W; Tian Y; Ma P; Opperman LA; Wang X
    FASEB J; 2016 Jan; 30(1):121-8. PubMed ID: 26324849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A unified model for bone-renal mineral and energy metabolism.
    Rowe PS
    Curr Opin Pharmacol; 2015 Jun; 22():64-71. PubMed ID: 25880364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FGF23 is endogenously phosphorylated in bone cells.
    Lindberg I; Pang HW; Stains JP; Clark D; Yang AJ; Bonewald L; Li KZ
    J Bone Miner Res; 2015 Mar; 30(3):449-54. PubMed ID: 25195776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteocyte-specific deletion of Fgfr1 suppresses FGF23.
    Xiao Z; Huang J; Cao L; Liang Y; Han X; Quarles LD
    PLoS One; 2014; 9(8):e104154. PubMed ID: 25089825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypophosphatemic rickets: revealing novel control points for phosphate homeostasis.
    White KE; Hum JM; Econs MJ
    Curr Osteoporos Rep; 2014 Sep; 12(3):252-62. PubMed ID: 24980542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fibroblast growth factor 23 in acute kidney injury.
    Christov M
    Curr Opin Nephrol Hypertens; 2014 Jul; 23(4):340-5. PubMed ID: 24848938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PHEX mimetic (SPR4-peptide) corrects and improves HYP and wild type mice energy-metabolism.
    Zelenchuk LV; Hedge AM; Rowe PS
    PLoS One; 2014; 9(5):e97326. PubMed ID: 24839967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dysregulated gene expression in the primary osteoblasts and osteocytes isolated from hypophosphatemic Hyp mice.
    Miyagawa K; Yamazaki M; Kawai M; Nishino J; Koshimizu T; Ohata Y; Tachikawa K; Mikuni-Takagaki Y; Kogo M; Ozono K; Michigami T
    PLoS One; 2014; 9(4):e93840. PubMed ID: 24710520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Therapeutic management of hypophosphatemic rickets from infancy to adulthood.
    Linglart A; Biosse-Duplan M; Briot K; Chaussain C; Esterle L; Guillaume-Czitrom S; Kamenicky P; Nevoux J; Prié D; Rothenbuhler A; Wicart P; Harvengt P
    Endocr Connect; 2014; 3(1):R13-30. PubMed ID: 24550322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron and fibroblast growth factor 23 in X-linked hypophosphatemia.
    Imel EA; Gray AK; Padgett LR; Econs MJ
    Bone; 2014 Mar; 60():87-92. PubMed ID: 24325979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The rachitic tooth.
    Foster BL; Nociti FH; Somerman MJ
    Endocr Rev; 2014 Feb; 35(1):1-34. PubMed ID: 23939820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia.
    McKee MD; Hoac B; Addison WN; Barros NM; Millán JL; Chaussain C
    Periodontol 2000; 2013 Oct; 63(1):102-22. PubMed ID: 23931057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypophosphatemic rickets due to perturbations in renal tubular function.
    Penido MG; Alon US
    Pediatr Nephrol; 2014 Mar; 29(3):361-73. PubMed ID: 23636577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.