BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22887021)

  • 1. Comparative power of family-based association strategies to detect disease-causing variants under two-locus models.
    Babron MC; Guilloud-Bataille M; Sahbatou M; Demenais F; GĂ©nin E; Dizier MH
    Genet Epidemiol; 2012 Dec; 36(8):848-55. PubMed ID: 22887021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Where is the causal variant? On the advantage of the family design over the case-control design in genetic association studies.
    Dandine-Roulland C; Perdry H
    Eur J Hum Genet; 2015 Oct; 23(10):1357-63. PubMed ID: 25585700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further investigation of linkage disequilibrium SNPs and their ability to identify associated susceptibility loci.
    North BV; Curtis D; Martin ER; Lai EH; Roses AD; Sham PC
    Ann Hum Genet; 2004 May; 68(Pt 3):240-8. PubMed ID: 15180704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detailed analysis of the relative power of direct and indirect association studies and the implications for their interpretation.
    Moskvina V; O'Donovan MC
    Hum Hered; 2007; 64(1):63-73. PubMed ID: 17483598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of population- and family-based methods for genetic association analysis in the presence of interacting loci.
    Howson JM; Barratt BJ; Todd JA; Cordell HJ
    Genet Epidemiol; 2005 Jul; 29(1):51-67. PubMed ID: 15892093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of single-locus tests to detect gene/disease associations.
    Roeder K; Bacanu SA; Sonpar V; Zhang X; Devlin B
    Genet Epidemiol; 2005 Apr; 28(3):207-19. PubMed ID: 15637715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and testing for joint association using a genetic random field model.
    He Z; Zhang M; Zhan X; Lu Q
    Biometrics; 2014 Sep; 70(3):471-9. PubMed ID: 24628067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using propensity score adjustment method in genetic association studies.
    Sengupta Chattopadhyay A; Lin YC; Hsieh AR; Chang CC; Lian IeB; Fann CS
    Comput Biol Chem; 2016 Jun; 62():1-11. PubMed ID: 26991546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis.
    Huang YT; Liang L; Moffatt MF; Cookson WO; Lin X
    Genet Epidemiol; 2015 Jul; 39(5):347-56. PubMed ID: 25997986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of missing and erroneous genotypes on tagging SNP selection and power of subsequent association tests.
    Liu W; Zhao W; Chase GA
    Hum Hered; 2006; 61(1):31-44. PubMed ID: 16557026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening and replication using the same data set: testing strategies for family-based studies in which all probands are affected.
    Murphy A; Weiss ST; Lange C
    PLoS Genet; 2008 Sep; 4(9):e1000197. PubMed ID: 18802462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probability theory-based SNP association study method for identifying susceptibility loci and genetic disease models in human case-control data.
    Yuan X; Zhang J; Wang Y
    IEEE Trans Nanobioscience; 2010 Dec; 9(4):232-41. PubMed ID: 20840904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci.
    Garner C; Slatkin M
    Genet Epidemiol; 2003 Jan; 24(1):57-67. PubMed ID: 12508256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of risk and interaction of single nucleotide polymorphisms at angiotensinogen locus causing susceptibility to essential hypertension: a case control study.
    Charita B; Padma G; Sushma P; Deepak P; Padma T
    J Renin Angiotensin Aldosterone Syst; 2012 Dec; 13(4):461-71. PubMed ID: 22570327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of genetic model parameters for cost-effective designs of genetic association studies using DNA pooling.
    Ji F; Finch SJ; Haynes C; Mendell NR; Gordon D
    BMC Genomics; 2007 Jul; 8():238. PubMed ID: 17634103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-locus genetic association test for a dichotomous trait and its secondary phenotype.
    Zhang H; Wu CO; Yang Y; Berndt SI; Chanock SJ; Yu K
    Stat Methods Med Res; 2018 May; 27(5):1464-1475. PubMed ID: 27507288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The power of genome-wide association studies of complex disease genes: statistical limitations of indirect approaches using SNP markers.
    Ohashi J; Tokunaga K
    J Hum Genet; 2001; 46(8):478-82. PubMed ID: 11501946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine-mapping additive and dominant SNP effects using group-LASSO and fractional resample model averaging.
    Sabourin J; Nobel AB; Valdar W
    Genet Epidemiol; 2015 Feb; 39(2):77-88. PubMed ID: 25417853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency and power in genetic association studies.
    de Bakker PI; Yelensky R; Pe'er I; Gabriel SB; Daly MJ; Altshuler D
    Nat Genet; 2005 Nov; 37(11):1217-23. PubMed ID: 16244653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relative power of SNPs and haplotype as genetic markers for association tests.
    Bader JS
    Pharmacogenomics; 2001 Feb; 2(1):11-24. PubMed ID: 11258193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.