These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 2288707)

  • 41. Effect of hemoglobin A and S on human erythrocyte ghosts.
    Wiedenmann B; Elbaum D
    J Biol Chem; 1983 May; 258(9):5483-9. PubMed ID: 6602131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium transport and ultrastructure of red cells in beta-thalassemia intermedia.
    Bookchin RM; Ortiz OE; Shalev O; Tsurel S; Rachmilewitz EA; Hockaday A; Lew VL
    Blood; 1988 Nov; 72(5):1602-7. PubMed ID: 3179442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The molecular pathobiology of cell membrane iron: the sickle red cell as a model.
    Browne P; Shalev O; Hebbel RP
    Free Radic Biol Med; 1998 Apr; 24(6):1040-8. PubMed ID: 9607615
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Erythrocytic ecdysis. An unusual morphologic finding in a case of sickle cell anemia with intercurrent cold-agglutinin syndrome.
    Ward PC; Smith CM; White JG
    Am J Clin Pathol; 1979 Sep; 72(3):479-85. PubMed ID: 474528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phospholipid composition of blood plasma, erythrocytes, and "ghosts" in sickle cell disease.
    Schwarz HP; Dahlke MB; Dreisbach L
    Clin Chem; 1977 Sep; 23(9):1548-50. PubMed ID: 890897
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sequestrocytes: a manifestation of transcellular cross-bonding of the red cell membrane in sickle cell anemia.
    Weinstein RS; Warth JA; Near K; Marikovsky Y
    J Cell Sci; 1989 Nov; 94 ( Pt 3)():593-600. PubMed ID: 2632586
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calpromotin, a cytoplasmic protein, is associated with the formation of dense cells in sickle cell anemia.
    Moore RB; Shriver SK; Jenkins LD; Mankad VN; Shah AK; Plishker GA
    Am J Hematol; 1997 Oct; 56(2):100-6. PubMed ID: 9326351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Autophagic vesicles on mature human reticulocytes explain phosphatidylserine-positive red cells in sickle cell disease.
    Mankelow TJ; Griffiths RE; Trompeter S; Flatt JF; Cogan NM; Massey EJ; Anstee DJ
    Blood; 2015 Oct; 126(15):1831-4. PubMed ID: 26276668
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acceleration of the rate of deoxyhemoglobin S polymerization by the erythrocyte membrane.
    Shibata K; Cottam GL; Waterman MR
    FEBS Lett; 1980 Jan; 110(1):107-10. PubMed ID: 7353654
    [No Abstract]   [Full Text] [Related]  

  • 50. Sickle hemoglobin and erythrocyte membrane permeability.
    Owen JD; Chandler WL; Eyring EM
    Blood; 1977 Aug; 50(2):347-8. PubMed ID: 871529
    [No Abstract]   [Full Text] [Related]  

  • 51. Metabolic and morphologic effects of intraerythrocytic calcium: implications for the pathogenesis of sickel cell disease.
    Eaton JW; Berger E; White JG; Jacob HS
    Prog Clin Biol Res; 1977; 14():275-98. PubMed ID: 605141
    [No Abstract]   [Full Text] [Related]  

  • 52. The ins and outs of reticulocyte maturation revisited: The role of autophagy in sickle cell disease.
    Mankelow TJ; Griffiths RE; Trompeter S; Flatt JF; Cogan NM; Massey EJ; Anstee DJ
    Autophagy; 2016; 12(3):590-1. PubMed ID: 27046252
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protection of erythrocyte membrane amino groups from reaction with methyl acetimidate by pyridoxal 5'-phosphate Schiff base formation.
    Chao TL; Berenfeld MR; Gabuzda TG
    Biochim Biophys Acta; 1984 Apr; 771(2):183-7. PubMed ID: 6704394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Red cell PMVs, plasma membrane-derived vesicles calling out for standards.
    Hind E; Heugh S; Ansa-Addo EA; Antwi-Baffour S; Lange S; Inal J
    Biochem Biophys Res Commun; 2010 Sep; 399(4):465-9. PubMed ID: 20674549
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elevated erythrocyte calcium in sickle cell disease.
    Eaton JW; Skelton TD; Swofford HS; Kolpin CE; Jacob HS
    Nature; 1973 Nov; 246(5428):105-6. PubMed ID: 4585849
    [No Abstract]   [Full Text] [Related]  

  • 56. Formation of intracellular vesicles in neonatal and adult erythrocytes: evidence against the concept of neonatal hyposplenism.
    Sills RH; Tamburlin JH; Barrios NJ; Glomski CA; Yeagle PL
    Pediatr Res; 1988 Dec; 24(6):703-8. PubMed ID: 3205626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Calcium distribution within human erythrocytes.
    Schrier SL; Johnson M; Junga I; Krueger J
    Blood; 1980 Oct; 56(4):667-76. PubMed ID: 7417707
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Osmotic induction of fluid-phase endocytosis in onion epidermal cells.
    Oparka KJ; Prior DA; Harris N
    Planta; 1990 Mar; 180(4):555-61. PubMed ID: 24202101
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Erythrocyte membrane abnormalities in sickle cell disease.
    Williamson P; Puchulu E; Westerman M; Schlegel RA
    Biotechnol Appl Biochem; 1990 Oct; 12(5):523-8. PubMed ID: 2288707
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ca2+ accumulation and loss by aberrant endocytic vesicles in sickle erythrocytes.
    Williamson P; Puchulu E; Penniston JT; Westerman MP; Schlegel RA
    J Cell Physiol; 1992 Jul; 152(1):1-9. PubMed ID: 1535631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.