BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2288767)

  • 1. On rat renal aminolevulinate transport and metabolism in experimental Fanconi syndrome.
    Roth KS; Carter BE; Moses LC; Spencer PD
    Biochem Med Metab Biol; 1990 Dec; 44(3):238-46. PubMed ID: 2288767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal heme metabolism in hereditary tyrosinemia: use of succinylacetone in rat renal tubules.
    Wyss PA; Carter BE; Boynton SB; Connor E; Fowler B; Roth KS
    Biochim Biophys Acta; 1991 Dec; 1070(2):300-4. PubMed ID: 1764448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hereditary tyrosinemia and the heme biosynthetic pathway. Profound inhibition of delta-aminolevulinic acid dehydratase activity by succinylacetone.
    Sassa S; Kappas A
    J Clin Invest; 1983 Mar; 71(3):625-34. PubMed ID: 6826727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Succinylacetone inhibits delta-aminolevulinate dehydratase and potentiates the drug and steroid induction of delta-aminolevulinate synthase in liver.
    Sassa S; Kappas A
    Trans Assoc Am Physicians; 1982; 95():42-52. PubMed ID: 7182986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Succinylacetone effects on renal tubular phosphate metabolism: a model for experimental renal Fanconi syndrome.
    Roth KS; Carter BE; Higgins ES
    Proc Soc Exp Biol Med; 1991 Apr; 196(4):428-31. PubMed ID: 1672565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of succinylacetone on the uptake of sugars and amino acids by brush border vesicles.
    Spencer PD; Medow MS; Moses LC; Roth KS
    Kidney Int; 1988 Nov; 34(5):671-7. PubMed ID: 3199678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of succinylacetone on amino acid uptake in the rat kidney.
    Spencer PD; Roth KS
    Biochem Med Metab Biol; 1987 Feb; 37(1):101-9. PubMed ID: 3566973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. delta-Aminolevulinic acid dehydratase: effects of succinylacetone in rat liver and kidney in an in vivo model of the renal Fanconi syndrome.
    Wyss PA; Carter BE; Roth KS
    Biochem Med Metab Biol; 1992 Aug; 48(1):86-9. PubMed ID: 1524874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of succinylacetone on methyl alpha-D-glucoside uptake by the rat renal tubule.
    Roth KS; Spencer PD; Higgins ES; Spencer RF
    Biochim Biophys Acta; 1985 Oct; 820(1):140-6. PubMed ID: 4052413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of extrahepatic tissues to biochemical abnormalities in hereditary tyrosinemia type I: study of three patients after liver transplantation.
    Tuchman M; Freese DK; Sharp HL; Ramnaraine ML; Ascher N; Bloomer JR
    J Pediatr; 1987 Mar; 110(3):399-403. PubMed ID: 3546650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal Fanconi syndrome: developmental basis for a new animal model with relevance to human disease.
    Roth KS; Medow MS; Moses LC; Spencer PD; Schwarz SM
    Biochim Biophys Acta; 1989 Dec; 987(1):38-46. PubMed ID: 2597685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue distribution of succinylacetone in the rat in vivo: a possible basis for neurotoxicity in hereditary infantile tyrosinemia.
    Wyss PA; Boynton S; Chu J; Roth KS
    Biochim Biophys Acta; 1993 Oct; 1182(3):323-8. PubMed ID: 8399368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of succinylacetone and the use of its measurement in mass screening for hereditary tyrosinemia.
    Grenier A; Lescault A; Laberge C; Gagné R; Mamer O
    Clin Chim Acta; 1982 Aug; 123(1-2):93-9. PubMed ID: 7116642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. delta-Aminolevulinic acid dehydratase: is there a form unique to renal cortex?
    Roth KS; Spencer PD; Moses LC; Carter BE
    Enzyme; 1990; 43(1):17-25. PubMed ID: 2361489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of liver, kidney, and erythrocyte delta-aminolevulinic acid dehydratase (porphobilinogen synthase) by gallium in the rat.
    Goering PL; Rehm S
    Environ Res; 1990 Dec; 53(2):135-51. PubMed ID: 2253599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological basis for an animal model of the renal Fanconi syndrome: use of succinylacetone in the rat.
    Wyss PA; Boynton SB; Chu J; Spencer RF; Roth KS
    Clin Sci (Lond); 1992 Jul; 83(1):81-7. PubMed ID: 1325326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Succinylacetone and delta-aminolevulinic acid dehydratase in hereditary tyrosinemia: immunochemical study of the enzyme.
    Sassa S; Fujita H; Kappas A
    Pediatrics; 1990 Jul; 86(1):84-6. PubMed ID: 2359685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of succinylacetone (4,6-dioxoheptanoic acid) on delta-aminolevulinate synthase activity and the content of heme in monolayers of chick embryo liver cells.
    Schoenfeld N; Greenblat Y; Epstein O; Atsmon A
    Biochim Biophys Acta; 1982 Dec; 721(4):408-17. PubMed ID: 7159602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron mobilization by succinylacetone methyl ester in rats. A model study for hereditary tyrosinemia and porphyrias characterized by 5-aminolevulinic acid overload.
    Rocha ME; Bandy B; Costa CA; de Barros MP; Pinto AM; Bechara EJ
    Free Radic Res; 2000 Apr; 32(4):343-53. PubMed ID: 10741855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the enzymic defects in hereditary tyrosinemia.
    Lindblad B; Lindstedt S; Steen G
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4641-5. PubMed ID: 270706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.