BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 2288773)

  • 1. [Studies of age-related changes in intracerebral small vessels of rat--do all cerebral blood vessels get aging concurrently?].
    Hikishima H; Mato M
    No To Shinkei; 1990 Oct; 42(10):929-44. PubMed ID: 2288773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of age and vasopressin on the uptake capacity of fluorescent granular perithelial cells (FGP) of small cerebral vessels of the rat.
    Mato M; Ookawara S
    Am J Anat; 1981 Sep; 162(1):45-53. PubMed ID: 7304474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Role of perivascular phagocyte (FGP) of cerebral small blood vessel in cerebral edema].
    Mato M; Ookawara S; Hikishima H
    No To Shinkei; 1989 Nov; 41(11):1109-17. PubMed ID: 2559766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Ultrastructural study on intracerebral small blood vessels and fluorescent granular perithelial (FGP) cells in experimental cerebral ischemia].
    Mashiko T; Ookawara S; Mato M
    No To Shinkei; 1999 Oct; 51(10):871-8. PubMed ID: 10553588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on distribution of pericyte and fluorescent granular perithelial (FGP) cell in the transitional region between arteriole and capillary in rat cerebral cortex.
    Ookawara S; Mitsuhashi U; Suminaga Y; Mato M
    Anat Rec; 1996 Feb; 244(2):257-64. PubMed ID: 8808400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on fluorescent granular perithelium (F.G.P.) of rat cerebral cortex - especially referring to morphological changes in aging.
    Mato M; Ookawara S; Aikawa E; Kawasaki K
    Anat Anz; 1981; 149(5):486-501. PubMed ID: 6974517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Studies on cerebral scavenger cells (fluorescent granular perithelial cells) - especially uptake and digestion of incorporated fat].
    Mato M; Ookawara S; Sano M; Kurihara K
    No To Shinkei; 1982 Oct; 34(10):989-97. PubMed ID: 6924858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An attempt to differentiate further between microglia and fluorescent granular perithelial (FGP) cells by their capacity to incorporate exogenous protein.
    Mato M; Ookawara S; Mato TK; Namiki T
    Am J Anat; 1985 Feb; 172(2):125-40. PubMed ID: 3976543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge-related alterations of the cerebral endothelium.
    Nagy Z; Peters H; Hüttner I
    Lab Invest; 1983 Dec; 49(6):662-71. PubMed ID: 6656198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on the distribution of collagen fibers in the bifurcating area of cerebral arterioles of Wistar rats].
    Mato M; Mato T; Kouki T; Tsutsumi H
    No To Shinkei; 2007 Feb; 59(2):158-64. PubMed ID: 17315757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tridimensional observation of fluorescent granular perithelial (FGP) cells in rat cerebral blood vessels.
    Mato M; Aikawa E; Mato TK; Kurihara K
    Anat Rec; 1986 Aug; 215(4):413-9. PubMed ID: 3740477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on the distribution of collagen fibers in the bifurcating area of cerebral arterioles of Wistar rats].
    Mato M; Mato T; Kouki T; Tsutsumi H
    Brain Nerve; 2007 Feb; 59(2):158-64. PubMed ID: 17380780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the vasculogenesis in rat cerebral cortex.
    Mato M; Ookawara S; Namiki T
    Anat Rec; 1989 Jul; 224(3):355-64. PubMed ID: 2782620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies on ultrastructural changes in perivascular cells (F.G.P.) of small cerebral vessels at the initial stage after cold injury--chronological observations on F.G.P. within 24 hours].
    Fukuda S; Mato M
    No To Shinkei; 1985 Apr; 37(4):349-57. PubMed ID: 4027082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor.
    Broadwell RD; Baker-Cairns BJ; Friden PM; Oliver C; Villegas JC
    Exp Neurol; 1996 Nov; 142(1):47-65. PubMed ID: 8912898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serological determinants of fluorescent granular perithelial cells along small cerebral blood vessels in rodent.
    Mato M; Ookawara S; Saito-Taki T
    Acta Neuropathol; 1986; 72(2):117-23. PubMed ID: 2435105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural and permeability features of microvessels in the periventricular area of senescence-accelerated mice (SAM).
    Ueno M; Sakamoto H; Kanenishi K; Onodera M; Akiguchi I; Hosokawa M
    Microsc Res Tech; 2001 May; 53(3):232-8. PubMed ID: 11301499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Early development of cerebral blood vessels: on the morphological changes in endothelial cells during the fetal period in the rat brain].
    Yoshida Y; Yamada M; Wakabayashi K; Ikuta F
    No To Shinkei; 1989 Feb; 41(2):177-84. PubMed ID: 2736148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructural characteristics of blood vessels in the infant and adult human cerebral cortex.
    Zhang HF; Ong WY; Leong SK; Garey LJ
    Histol Histopathol; 1997 Jan; 12(1):85-97. PubMed ID: 9046047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the distribution and functional roles of transitory amoeboid microglial cells in developing rat brain using exogenous horseradish peroxidase as a marker.
    Xu J; Ling EA
    J Hirnforsch; 1994; 35(1):103-11. PubMed ID: 7517414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.