BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22887766)

  • 1. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles.
    Musante C; White JC
    Environ Toxicol; 2012 Sep; 27(9):510-7. PubMed ID: 22887766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo.
    Hawthorne J; Musante C; Sinha SK; White JC
    Int J Phytoremediation; 2012 Apr; 14(4):429-42. PubMed ID: 22567722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assay-dependent phytotoxicity of nanoparticles to plants.
    Stampoulis D; Sinha SK; White JC
    Environ Sci Technol; 2009 Dec; 43(24):9473-9. PubMed ID: 19924897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Ag nanoparticle exposure on p,p'-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean).
    De La Torre-Roche R; Hawthorne J; Musante C; Xing B; Newman LA; Ma X; White JC
    Environ Sci Technol; 2013 Jan; 47(2):718-25. PubMed ID: 23252415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo).
    Tamez C; Hernandez-Molina M; Hernandez-Viezcas JA; Gardea-Torresdey JL
    Sci Total Environ; 2019 May; 665():100-106. PubMed ID: 30772537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna.
    Xiao Y; Peijnenburg WJGM; Chen G; Vijver MG
    Sci Total Environ; 2018 Jan; 610-611():1329-1335. PubMed ID: 28851153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study.
    Yang J; Jiang F; Ma C; Rui Y; Rui M; Adeel M; Cao W; Xing B
    J Agric Food Chem; 2018 Mar; 66(11):2589-2597. PubMed ID: 29451784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced Silver Nanoparticle Phytotoxicity in Crambe abyssinica with Enhanced Glutathione Production by Overexpressing Bacterial γ-Glutamylcysteine Synthase.
    Ma C; Chhikara S; Minocha R; Long S; Musante C; White JC; Xing B; Dhankher OP
    Environ Sci Technol; 2015 Aug; 49(16):10117-26. PubMed ID: 26186015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle-Specific Toxicity of Copper Nanoparticles to Soybean (Glycine max L.): Effects of Nanoparticle Concentration and Natural Organic Matter.
    Xiao Y; Tang W; Peijnenburg WJGM
    Environ Toxicol Chem; 2021 Oct; 40(10):2825-2835. PubMed ID: 34289521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes.
    Han X; Geller B; Moniz K; Das P; Chippindale AK; Walker VK
    Sci Total Environ; 2014 Jul; 487():822-9. PubMed ID: 24462134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the potential risks to zebrafish posed by environmentally relevant copper and silver nanoparticles.
    Chio CP; Chen WY; Chou WC; Hsieh NH; Ling MP; Liao CM
    Sci Total Environ; 2012 Mar; 420():111-8. PubMed ID: 22326136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Phytotoxicity of colloidal solutions of metal-containing nanoparticles].
    Konotop IeO; Kovalenko MS; Ulynets' VZ; Meleshko AO; Batsmanova LM; Taran NIu
    Tsitol Genet; 2014; 48(2):37-42. PubMed ID: 24818509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods.
    Jo HJ; Choi JW; Lee SH; Hong SW
    J Hazard Mater; 2012 Aug; 227-228():301-8. PubMed ID: 22682800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle silver coexposure reduces the accumulation of weathered persistent pesticides by earthworms.
    Mukherjee A; Hawthorne J; White JC; Kelsey JW
    Environ Toxicol Chem; 2017 Jul; 36(7):1864-1871. PubMed ID: 27925275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens.
    Malandrakis AA; Kavroulakis N; Chrysikopoulos CV
    Sci Total Environ; 2019 Jun; 670():292-299. PubMed ID: 30903901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos.
    Hua J; Vijver MG; Ahmad F; Richardson MK; Peijnenburg WJ
    Environ Toxicol Chem; 2014 Aug; 33(8):1774-82. PubMed ID: 24839162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake.
    Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO
    Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.
    Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S
    Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles.
    Gao J; Powers K; Wang Y; Zhou H; Roberts SM; Moudgil BM; Koopman B; Barber DS
    Chemosphere; 2012 Sep; 89(1):96-101. PubMed ID: 22583785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.
    Maurer EI; Sharma M; Schlager JJ; Hussain SM
    Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.