These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22887837)

  • 41. Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel.
    Foley JO; Mashadi-Hossein A; Fu E; Finlayson BA; Yager P
    Lab Chip; 2008 Apr; 8(4):557-64. PubMed ID: 18369510
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polymer bilayer formation due to specific interactions between beta-cyclodextrin and adamantane: a surface force study.
    Blomberg E; Kumpulainen A; David C; Amiel C
    Langmuir; 2004 Nov; 20(24):10449-54. PubMed ID: 15544372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples.
    Messina GA; Panini NV; Martinez NA; Raba J
    Anal Biochem; 2008 Sep; 380(2):262-7. PubMed ID: 18577366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reversible Molecular Capture and Release in Microfluidics by Host-Guest Interactions in Hydrogel Microdots.
    Jiao C; Liubimtsev N; Zagradska-Paromova Z; Appelhans D; Gaitzsch J; Voit B
    Macromol Rapid Commun; 2023 Aug; 44(16):e2200869. PubMed ID: 36702804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversible, High-Affinity Surface Capturing of Proteins Directed by Supramolecular Assembly.
    Di Palma G; Kotowska AM; Hart LR; Scurr DJ; Rawson FJ; Tommasone S; Mendes PM
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8937-8944. PubMed ID: 30726052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coupling biomolecules to fullerenes through a molecular adapter.
    Capaccio M; Gavalas VG; Meier MS; Anthony JE; Bachas LG
    Bioconjug Chem; 2005; 16(2):241-4. PubMed ID: 15769075
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polymer-binding peptides for the noncovalent modification of polymer surfaces: effects of peptide density on the subsequent immobilization of functional proteins.
    Date T; Sekine J; Matsuno H; Serizawa T
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):351-9. PubMed ID: 21288050
    [TBL] [Abstract][Full Text] [Related]  

  • 49. "Smart" mobile affinity matrix for microfluidic immunoassays.
    Malmstadt N; Hoffman AS; Stayton PS
    Lab Chip; 2004 Aug; 4(4):412-5. PubMed ID: 15269814
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Layer-by-layer-assembled microfiltration membranes for biomolecule immobilization and enzymatic catalysis.
    Smuleac V; Butterfield DA; Bhattacharyya D
    Langmuir; 2006 Nov; 22(24):10118-24. PubMed ID: 17107008
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A supramolecular bioactive surface for specific binding of protein.
    Hu C; Qu Y; Zhan W; Wei T; Cao L; Yu Q; Chen H
    Colloids Surf B Biointerfaces; 2017 Apr; 152():192-198. PubMed ID: 28110041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of linkers on immobilization of scFvs with biotin-streptavidin interaction.
    Ikonomova SP; Le MT; Kalla N; Karlsson AJ
    Biotechnol Appl Biochem; 2018 Jul; 65(4):580-585. PubMed ID: 29377386
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immobilization of sugar-non-specific nucleases by utilizing the streptavidin--biotin interaction.
    Gast FU; Franke I; Meiss G; Pingoud A
    J Biotechnol; 2001 May; 87(2):131-41. PubMed ID: 11278037
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization.
    Su X; Wu YJ; Robelek R; Knoll W
    Langmuir; 2005 Jan; 21(1):348-53. PubMed ID: 15620323
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Redox strategy for reversible attachment of biomolecules using bifunctional linkers.
    Dubacheva GV; Galibert M; Coche-Guerente L; Dumy P; Boturyn D; Labbé P
    Chem Commun (Camb); 2011 Mar; 47(12):3565-7. PubMed ID: 21321707
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.
    Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W
    Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measuring single-bond rupture forces using high electric fields in microfluidic channels and DNA oligomers as force tags.
    Breisch S; Gonska J; Deissler H; Stelzle M
    Biophys J; 2005 Sep; 89(3):L19-21. PubMed ID: 16040764
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transfer hydrogenations catalyzed by streptavidin-hosted secondary amine organocatalysts.
    Santi N; Morrill LC; Swiderek K; Moliner V; Luk LYP
    Chem Commun (Camb); 2021 Feb; 57(15):1919-1922. PubMed ID: 33496282
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Supramolecular architectures of streptavidin on biotinylated self-assembled monolayers. Tracking biomolecular reorganization after bioconjugation.
    Azzaroni O; Mir M; Knoll W
    J Phys Chem B; 2007 Dec; 111(48):13499-503. PubMed ID: 17997545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA.
    Herrmann M; Veres T; Tabrizian M
    Lab Chip; 2006 Apr; 6(4):555-60. PubMed ID: 16572219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.