BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 22887900)

  • 1. Structure-based replacement of methionine residues at the catalytic domains with serine significantly improves the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica.
    Yang H; Liu L; Li J; Du G; Chen J
    Biotechnol Prog; 2012; 28(5):1271-7. PubMed ID: 22887900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-guided systems-level engineering of oxidation-prone methionine residues in catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica for significant improvement of both oxidative stability and catalytic efficiency.
    Yang H; Liu L; Shin HD; Li J; Du G; Chen J
    PLoS One; 2013; 8(3):e57403. PubMed ID: 23554859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based engineering of methionine residues in the catalytic cores of alkaline amylase from Alkalimonas amylolytica for improved oxidative stability.
    Yang H; Liu L; Wang M; Li J; Wang NS; Du G; Chen J
    Appl Environ Microbiol; 2012 Nov; 78(21):7519-26. PubMed ID: 22865059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability.
    Deng Z; Yang H; Li J; Shin HD; Du G; Liu L; Chen J
    Appl Microbiol Biotechnol; 2014 May; 98(9):3997-4007. PubMed ID: 24247992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability.
    Deng Z; Yang H; Shin HD; Li J; Liu L
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):8937-45. PubMed ID: 24816623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of heterologous expression, biochemical characterization optimal production of an alkaline α-amylase from alkaliphilic Alkalimonas amylolytica in Escherichia coli and Pichia pastoris.
    Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    Biotechnol Prog; 2013; 29(1):39-47. PubMed ID: 23125186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacement of methionine 208 in a truncated Bacillus sp. TS-23 alpha-amylase with oxidation-resistant leucine enhances its resistance to hydrogen peroxide.
    Lin LL; Lo HF; Chiang WY; Hu HY; Hsu WH; Chang CT
    Curr Microbiol; 2003 Mar; 46(3):211-6. PubMed ID: 12567245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of an oligopeptide to the N terminus of an alkaline α-amylase from Alkalimonas amylolytica simultaneously improves the enzyme's catalytic efficiency, thermal stability, and resistance to oxidation.
    Yang H; Lu X; Liu L; Li J; Shin HD; Chen RR; Du G; Chen J
    Appl Environ Microbiol; 2013 May; 79(9):3049-58. PubMed ID: 23455344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene cloning and characterization of a novel alpha-amylase from alkaliphilic Alkalimonas amylolytica.
    Wang N; Zhang Y; Wang Q; Liu J; Wang H; Xue Y; Ma Y
    Biotechnol J; 2006 Nov; 1(11):1258-65. PubMed ID: 17068753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions.
    Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site.
    Ghollasi M; Ghanbari-Safari M; Khajeh K
    Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico rational design and systems engineering of disulfide bridges in the catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica to improve thermostability.
    Liu L; Deng Z; Yang H; Li J; Shin HD; Chen RR; Du G; Chen J
    Appl Environ Microbiol; 2014 Feb; 80(3):798-807. PubMed ID: 24212581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.
    Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R
    Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mutant alpha-amylase with only part of the catalytic domain and its structural implication.
    Ke T; Ma XD; Mao PH; Jin X; Chen SJ; Li Y; Ma LX; He GY
    Biotechnol Lett; 2007 Jan; 29(1):117-22. PubMed ID: 17091385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.
    Yang G; Yao H; Mozzicafreddo M; Ballarini P; Pucciarelli S; Miceli C
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of the alpha-amylase from Geobacillus stearothermophilus US100 for detergent incorporation.
    Khemakhem B; Ali MB; Aghajari N; Juy M; Haser R; Bejar S
    Biotechnol Bioeng; 2009 Feb; 102(2):380-9. PubMed ID: 18951544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis.
    Priyadharshini R; Gunasekaran P
    Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermostabilization by proline substitution in an alkaline, liquefying alpha-amylase from Bacillus sp. strain KSM-1378.
    Igarashi K; Ozawa T; Ikawakitayama K; Hayashi Y; Araki H; Endo K; Hagihara H; Ozaki K; Kawai S; Ito S
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1535-40. PubMed ID: 10540739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase.
    Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C
    J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of methionine residues for improving the oxidative stability of α-amylase from Thermotoga maritima.
    Ozturk H; Ece S; Gundeger E; Evran S
    J Biosci Bioeng; 2013 Oct; 116(4):449-51. PubMed ID: 23702189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.