BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22888047)

  • 21. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers.
    Fee T; Surianarayanan S; Downs C; Zhou Y; Berry J
    PLoS One; 2016; 11(5):e0154806. PubMed ID: 27196306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanofibrous scaffolds with biomimetic structure.
    Khalili S; Nouri Khorasani S; Razavi M; Hashemi Beni B; Heydari F; Tamayol A
    J Biomed Mater Res A; 2018 Feb; 106(2):370-376. PubMed ID: 28944539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds.
    Gomes SR; Rodrigues G; Martins GG; Henriques CM; Silva JC
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1219-27. PubMed ID: 23827564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering.
    Liu X; Smith LA; Hu J; Ma PX
    Biomaterials; 2009 Apr; 30(12):2252-8. PubMed ID: 19152974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds.
    Liu X; Ma PX
    Biomaterials; 2009 Sep; 30(25):4094-103. PubMed ID: 19481080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PAMAM (generation 4) incorporated gelatin 3D matrix as an improved dermal substitute for skin tissue engineering.
    Maji S; Agarwal T; Maiti TK
    Colloids Surf B Biointerfaces; 2017 Jul; 155():128-134. PubMed ID: 28419941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pro-angiogenic character of endothelial cells and gingival fibroblasts cocultures in perfused degradable polyurethane scaffolds.
    Cheung JW; Jain D; McCulloch CA; Santerre JP
    Tissue Eng Part A; 2015 May; 21(9-10):1587-99. PubMed ID: 25631100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional cultures of gingival fibroblasts on fibrin-based scaffolds for gingival augmentation: A proof-of-concept study.
    Asad MM; Abdelhafez RS; Barham R; Abdaljaleel M; Alkurdi B; Al-Hadidi S; Zalloum S; Ismail MM; Buqain R; Jafar H; Ababneh NA
    Arch Oral Biol; 2023 Oct; 154():105754. PubMed ID: 37413831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration.
    Ye K; Liu D; Kuang H; Cai J; Chen W; Sun B; Xia L; Fang B; Morsi Y; Mo X
    J Colloid Interface Sci; 2019 Jan; 534():625-636. PubMed ID: 30265990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.
    Gao X; Zhang X; Song J; Xu X; Xu A; Wang M; Xie B; Huang E; Deng F; Wei S
    Int J Nanomedicine; 2015; 10():7109-28. PubMed ID: 26604759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus.
    Kuppan P; Sethuraman S; Krishnan UM
    J Biomater Sci Polym Ed; 2014; 25(6):574-93. PubMed ID: 24502395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds.
    Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix.
    Qu T; Jing J; Ren Y; Ma C; Feng JQ; Yu Q; Liu X
    Acta Biomater; 2015 Apr; 16():60-70. PubMed ID: 25644448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional cell printing of gingival fibroblast/acellular dermal matrix/gelatin-sodium alginate scaffolds and their biocompatibility evaluation
    Liu P; Li Q; Yang Q; Zhang S; Lin C; Zhang G; Tang Z
    RSC Adv; 2020 Apr; 10(27):15926-15935. PubMed ID: 35493638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration.
    Lee JB; Jeong SI; Bae MS; Yang DH; Heo DN; Kim CH; Alsberg E; Kwon IK
    Tissue Eng Part A; 2011 Nov; 17(21-22):2695-702. PubMed ID: 21682540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering three-dimensional constructs of the periodontal ligament in hyaluronan-gelatin hydrogel films and a mechanically active environment.
    Saminathan A; Vinoth KJ; Low HH; Cao T; Meikle MC
    J Periodontal Res; 2013 Dec; 48(6):790-801. PubMed ID: 23581542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute.
    Sobhanian P; Khorram M; Hashemi SS; Mohammadi A
    Int J Biol Macromol; 2019 Jun; 130():977-987. PubMed ID: 30851329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering.
    Vatankhah E; Prabhakaran MP; Semnani D; Razavi S; Morshed M; Ramakrishna S
    Biopolymers; 2014 Dec; 101(12):1165-80. PubMed ID: 25042000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and preliminary in vitro evaluation of ultraviolet-crosslinked electrospun fish scale gelatin nanofibrous scaffolds.
    Beishenaliev A; Lim SS; Tshai KY; Khiew PS; Moh'd Sghayyar HN; Loh HS
    J Mater Sci Mater Med; 2019 May; 30(6):62. PubMed ID: 31127374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.