These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 22888123)
1. Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. Tosens T; Niinemets Ü; Westoby M; Wright IJ J Exp Bot; 2012 Sep; 63(14):5105-19. PubMed ID: 22888123 [TBL] [Abstract][Full Text] [Related]
2. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. Niinemets U; Wright IJ; Evans JR J Exp Bot; 2009; 60(8):2433-49. PubMed ID: 19255061 [TBL] [Abstract][Full Text] [Related]
3. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. Niinemets U; Díaz-Espejo A; Flexas J; Galmés J; Warren CR J Exp Bot; 2009; 60(8):2249-70. PubMed ID: 19395391 [TBL] [Abstract][Full Text] [Related]
4. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. Tomás M; Flexas J; Copolovici L; Galmés J; Hallik L; Medrano H; Ribas-Carbó M; Tosens T; Vislap V; Niinemets Ü J Exp Bot; 2013 May; 64(8):2269-81. PubMed ID: 23564954 [TBL] [Abstract][Full Text] [Related]
5. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Tosens T; Niinemets U; Vislap V; Eichelmann H; Castro Díez P Plant Cell Environ; 2012 May; 35(5):839-56. PubMed ID: 22070625 [TBL] [Abstract][Full Text] [Related]
6. Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry. Pengelly JJ; Sirault XR; Tazoe Y; Evans JR; Furbank RT; von Caemmerer S J Exp Bot; 2010 Sep; 61(14):4109-22. PubMed ID: 20693408 [TBL] [Abstract][Full Text] [Related]
7. Mesophyll conductance: the leaf corridors for photosynthesis. Gago J; Daloso DM; Carriquí M; Nadal M; Morales M; Araújo WL; Nunes-Nesi A; Flexas J Biochem Soc Trans; 2020 Apr; 48(2):429-439. PubMed ID: 32129830 [TBL] [Abstract][Full Text] [Related]
8. Anatomically induced changes in rice leaf mesophyll conductance explain the variation in photosynthetic nitrogen use efficiency under contrasting nitrogen supply. Gao L; Lu Z; Ding L; Xie K; Wang M; Ling N; Guo S BMC Plant Biol; 2020 Nov; 20(1):527. PubMed ID: 33208102 [TBL] [Abstract][Full Text] [Related]
9. Resistances along the CO2 diffusion pathway inside leaves. Evans JR; Kaldenhoff R; Genty B; Terashima I J Exp Bot; 2009; 60(8):2235-48. PubMed ID: 19395390 [TBL] [Abstract][Full Text] [Related]
10. Bundle sheath diffusive resistance to CO(2) and effectiveness of C(4) photosynthesis and refixation of photorespired CO(2) in a C(4) cycle mutant and wild-type Amaranthus edulis. Kiirats O; Lea PJ; Franceschi VR; Edwards GE Plant Physiol; 2002 Oct; 130(2):964-76. PubMed ID: 12376660 [TBL] [Abstract][Full Text] [Related]
11. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. Niinemets U; Díaz-Espejo A; Flexas J; Galmés J; Warren CR J Exp Bot; 2009; 60(8):2271-82. PubMed ID: 19305021 [TBL] [Abstract][Full Text] [Related]
12. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Terashima I; Hanba YT; Tazoe Y; Vyas P; Yano S J Exp Bot; 2006; 57(2):343-54. PubMed ID: 16356943 [TBL] [Abstract][Full Text] [Related]
13. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza). Giuliani R; Koteyeva N; Voznesenskaya E; Evans MA; Cousins AB; Edwards GE Plant Physiol; 2013 Jul; 162(3):1632-51. PubMed ID: 23669746 [TBL] [Abstract][Full Text] [Related]
14. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. Hassiotou F; Ludwig M; Renton M; Veneklaas EJ; Evans JR J Exp Bot; 2009; 60(8):2303-14. PubMed ID: 19286919 [TBL] [Abstract][Full Text] [Related]
15. Mesophyll conductance in leaves of Japanese white birch (Betula platyphylla var. japonica) seedlings grown under elevated CO2 concentration and low N availability. Kitao M; Yazaki K; Kitaoka S; Fukatsu E; Tobita H; Komatsu M; Maruyama Y; Koike T Physiol Plant; 2015 Dec; 155(4):435-45. PubMed ID: 25690946 [TBL] [Abstract][Full Text] [Related]
16. Variability in the chloroplast area lining the intercellular airspace and cell walls drives mesophyll conductance in gymnosperms. Veromann-Jürgenson LL; Brodribb TJ; Niinemets Ü; Tosens T J Exp Bot; 2020 Aug; 71(16):4958-4971. PubMed ID: 32392579 [TBL] [Abstract][Full Text] [Related]
17. Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types. Knauer J; Cuntz M; Evans JR; Niinemets Ü; Tosens T; Veromann-Jürgenson LL; Werner C; Zaehle S New Phytol; 2022 Oct; 236(2):357-368. PubMed ID: 35801854 [TBL] [Abstract][Full Text] [Related]
18. Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia. Barrera Zambrano VA; Lawson T; Olmos E; Fernández-García N; Borland AM J Exp Bot; 2014 Jul; 65(13):3513-23. PubMed ID: 24510939 [TBL] [Abstract][Full Text] [Related]
19. Anatomical and diffusional determinants inside leaves explain the difference in photosynthetic capacity between Cypripedium and Paphiopedilum, Orchidaceae. Yang ZH; Huang W; Yang QY; Chang W; Zhang SB Photosynth Res; 2018 Jun; 136(3):315-328. PubMed ID: 29159723 [TBL] [Abstract][Full Text] [Related]
20. Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis. Gorton HL; Herbert SK; Vogelmann TC Plant Physiol; 2003 Jul; 132(3):1529-39. PubMed ID: 12857833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]