These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22888317)

  • 1. Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks.
    Garcia GC; Lesne A; Hütt MT; Hilgetag CC
    Front Comput Neurosci; 2012; 6():50. PubMed ID: 22888317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs.
    Fretter C; Lesne A; Hilgetag CC; Hütt MT
    Sci Rep; 2017 Feb; 7():42340. PubMed ID: 28186182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of long cycles in excitable dynamics on graphs.
    Garcia GC; Lesne A; Hilgetag CC; Hütt MT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052805. PubMed ID: 25493832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topology regulates the distribution pattern of excitations in excitable dynamics on graphs.
    Müller-Linow M; Marr C; Hütt MT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016112. PubMed ID: 16907156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of network structure and time delay in a metapopulation Wilson--Cowan model.
    Conti F; Van Gorder RA
    J Theor Biol; 2019 Sep; 477():1-13. PubMed ID: 31181240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure.
    Hao D; Ren C; Li C
    BMC Syst Biol; 2012 May; 6():34. PubMed ID: 22548803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks.
    Messé A; Hütt MT; König P; Hilgetag CC
    Sci Rep; 2015 Jan; 5():7870. PubMed ID: 25598302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular topology emerges from plasticity in a minimalistic excitable network model.
    Damicelli F; Hilgetag CC; Hütt MT; Messé A
    Chaos; 2017 Apr; 27(4):047406. PubMed ID: 28456166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Link-usage asymmetry and collective patterns emerging from rich-club organization of complex networks.
    Moretti P; Hütt MT
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18332-18340. PubMed ID: 32690716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between Topology and Dynamics in Excitation Patterns on Hierarchical Graphs.
    Hütt MT; Lesne A
    Front Neuroinform; 2009; 3():28. PubMed ID: 19826610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-organized topology of recurrence-based complex networks.
    Yang H; Liu G
    Chaos; 2013 Dec; 23(4):043116. PubMed ID: 24387555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exactly solvable scale-free network model.
    Iguchi K; Yamada H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036144. PubMed ID: 15903530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic excitable media under Poisson drive: power law responses, spiral waves, and dynamic range.
    Ribeiro TL; Copelli M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051911. PubMed ID: 18643106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding network concepts in modules.
    Dong J; Horvath S
    BMC Syst Biol; 2007 Jun; 1():24. PubMed ID: 17547772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-sustained activity in a small-world network of excitable neurons.
    Roxin A; Riecke H; Solla SA
    Phys Rev Lett; 2004 May; 92(19):198101. PubMed ID: 15169447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity and Delayed Activation as Hallmarks of Self-Organization and Criticality in Excitable Tissue.
    Stožer A; Markovič R; Dolenšek J; Perc M; Marhl M; Slak Rupnik M; Gosak M
    Front Physiol; 2019; 10():869. PubMed ID: 31333504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological Properties of Neuromorphic Nanowire Networks.
    Loeffler A; Zhu R; Hochstetter J; Li M; Fu K; Diaz-Alvarez A; Nakayama T; Shine JM; Kuncic Z
    Front Neurosci; 2020; 14():184. PubMed ID: 32210754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network.
    Xiao Z; Deng Y
    PLoS One; 2020; 15(9):e0238915. PubMed ID: 32970681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitable Greenberg-Hastings cellular automaton model on scale-free networks.
    Wu AC; Xu XJ; Wang YH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):032901. PubMed ID: 17500743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.