BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

23 related articles for article (PubMed ID: 22888753)

  • 1. Comparing experimental and simulated pressure-area isotherms for DPPC.
    Duncan SL; Larson RG
    Biophys J; 2008 Apr; 94(8):2965-86. PubMed ID: 18199666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic-based bubble generation platform enables analysis of physical property change in phospholipid surfactant layers by interfacial ozone reaction.
    Shin YS; Choi TS; Kim H; Beauchamp JL; Heath JR; Kim HI
    Lab Chip; 2012 Dec; 12(24):5243-8. PubMed ID: 23117600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of clay nanoparticles on model lung surfactant: a potential marker of hazard from nanoaerosol inhalation.
    Kondej D; Sosnowski TR
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4660-9. PubMed ID: 26527341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of DPPG in lung surfactant exposed to benzo[a]pyrene.
    Korchowiec B; Stachowicz-Kuśnierz A; Korchowiec J
    Environ Sci Process Impacts; 2019 Mar; 21(3):438-445. PubMed ID: 30729964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of benzo[a]pyrene and diesel exhaust particulate matter with the lung surfactant system.
    Sosnowski TR; Koliński M; Gradón L
    Ann Occup Hyg; 2011 Apr; 55(3):329-38. PubMed ID: 21402870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Drug for Pulmonary Administration-Model Pulmonary Surfactant Monolayer Interactions Using Langmuir-Blodgett Monolayer and Molecular Dynamics Simulation: A Case Study of Ketoprofen.
    Hu J; Liu H; Xu P; Shang Y; Liu H
    Langmuir; 2019 Oct; 35(41):13452-13460. PubMed ID: 31524404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Lung Surfactant Interactions with Benzo[a]pyrene.
    Stachowicz-Kuśnierz A; Trojan S; Cwiklik L; Korchowiec B; Korchowiec J
    Chemistry; 2017 Apr; 23(22):5307-5316. PubMed ID: 28230285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of eicosane, a component of nanoparticles in diesel exhaust, on surface activity of pulmonary surfactant monolayers.
    Kanno S; Furuyama A; Hirano S
    Arch Toxicol; 2008 Nov; 82(11):841-50. PubMed ID: 18488198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of surface properties of dipalmitoyl phosphatidylcholine by benzo[a]pyrene: a model of pulmonary effects of diesel exhaust inhalation.
    Sosnowski TR; Koliński M; Gradoń L
    J Biomed Nanotechnol; 2012 Oct; 8(5):818-25. PubMed ID: 22888753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into lung surfactant monolayers using vibrational sum frequency generation spectroscopy.
    Ma G; Allen HC
    Photochem Photobiol; 2006; 82(6):1517-29. PubMed ID: 16930094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of pulmonary surfactant components in surface film formation and dynamics.
    Veldhuizen EJ; Haagsman HP
    Biochim Biophys Acta; 2000 Aug; 1467(2):255-70. PubMed ID: 11030586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrical surface potential of pulmonary surfactant.
    Leonenko Z; Amrein M
    Front Biosci (Landmark Ed); 2009 Jan; 14(11):4337-47. PubMed ID: 19273353
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.