These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22888826)

  • 1. Improving biogas separation and methane storage with multilayer graphene nanostructure via layer spacing optimization and lithium doping: a molecular simulation investigation.
    Chen JJ; Li WW; Li XL; Yu HQ
    Environ Sci Technol; 2012 Sep; 46(18):10341-8. PubMed ID: 22888826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane storage in molecular nanostructures.
    Adisa OO; Cox BJ; Hill JM
    Nanoscale; 2012 Jun; 4(11):3295-307. PubMed ID: 22538768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations.
    Du A; Zhu Z; Smith SC
    J Am Chem Soc; 2010 Mar; 132(9):2876-7. PubMed ID: 20155897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid molecular simulation of methane storage inside pillared graphene.
    Hassani A; Hamed Mosavian MT; Ahmadpour A; Farhadian N
    J Chem Phys; 2015 Jun; 142(23):234704. PubMed ID: 26093570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hydrogen storage nanotank: lithium-organic pillared graphite.
    Han SS; Jang SS
    Chem Commun (Camb); 2009 Sep; (36):5427-9. PubMed ID: 19724807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities.
    Chen JS; Wang Z; Dong XC; Chen P; Lou XW
    Nanoscale; 2011 May; 3(5):2158-61. PubMed ID: 21479308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-supported anatase TiO2 nanosheets for fast lithium storage.
    Ding S; Chen JS; Luan D; Boey FY; Madhavi S; Lou XW
    Chem Commun (Camb); 2011 May; 47(20):5780-2. PubMed ID: 21494738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage.
    Zhou G; Wang DW; Yin LC; Li N; Li F; Cheng HM
    ACS Nano; 2012 Apr; 6(4):3214-23. PubMed ID: 22424545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy.
    Chaemchuen S; Kabir NA; Zhou K; Verpoort F
    Chem Soc Rev; 2013 Dec; 42(24):9304-32. PubMed ID: 24045837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulations on methane uptake in tunable pillared porous graphene hybrid architectures.
    Jiang H; Cheng XL
    J Mol Graph Model; 2018 Oct; 85():223-231. PubMed ID: 30227367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?
    C OA; Caballero Á; Morales J
    Nanoscale; 2012 Mar; 4(6):2083-92. PubMed ID: 22358220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model.
    Kong XK; Chen QW
    Phys Chem Chem Phys; 2013 Aug; 15(31):12982-7. PubMed ID: 23817454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High uptakes of methane in Li-doped 3D covalent organic frameworks.
    Lan J; Cao D; Wang W
    Langmuir; 2010 Jan; 26(1):220-6. PubMed ID: 20038169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Li absorption and intercalation in single layer graphene and few layer graphene by first principles.
    Lee E; Persson KA
    Nano Lett; 2012 Sep; 12(9):4624-8. PubMed ID: 22920219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.