BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 22888834)

  • 1. Generic top-functionalization of patterned antifouling zwitterionic polymers on indium tin oxide.
    Li Y; Giesbers M; Gerth M; Zuilhof H
    Langmuir; 2012 Aug; 28(34):12509-17. PubMed ID: 22888834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling.
    Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D
    Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity.
    Wei Y; Zhang J; Feng X; Liu D
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalyst-free "click" functionalization of polymer brushes preserves antifouling properties enabling detection in blood plasma.
    Parrillo V; de Los Santos Pereira A; Riedel T; Rodriguez-Emmenegger C
    Anal Chim Acta; 2017 Jun; 971():78-87. PubMed ID: 28456286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length.
    Lego B; François M; Skene WG; Giasson S
    Langmuir; 2009 May; 25(9):5313-21. PubMed ID: 19256467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrocene functional polymer brushes on indium tin oxide via surface-initiated atom transfer radical polymerization.
    Kim BY; Ratcliff EL; Armstrong NR; Kowalewski T; Pyun J
    Langmuir; 2010 Feb; 26(3):2083-92. PubMed ID: 19968255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifouling Thin-Film Composite Membranes by Controlled Architecture of Zwitterionic Polymer Brush Layer.
    Liu C; Lee J; Ma J; Elimelech M
    Environ Sci Technol; 2017 Feb; 51(4):2161-2169. PubMed ID: 28094920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phototriggered functionalization of hierarchically structured polymer brushes.
    de los Santos Pereira A; Kostina NY; Bruns M; Rodriguez-Emmenegger C; Barner-Kowollik C
    Langmuir; 2015 Jun; 31(21):5899-907. PubMed ID: 25961109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic anchor for surface-initiated polymerization from metal substrates.
    Fan X; Lin L; Dalsin JL; Messersmith PB
    J Am Chem Soc; 2005 Nov; 127(45):15843-7. PubMed ID: 16277527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach for UV-patterning with binary polymer brushes.
    Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Saruwatari Y; Matsuoka K
    Colloids Surf B Biointerfaces; 2018 Jan; 161():42-50. PubMed ID: 29040833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator.
    Kuang J; Messersmith PB
    Langmuir; 2012 May; 28(18):7258-66. PubMed ID: 22506651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Kauffmann E; Ehrat M; Klok HA
    Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property.
    Liu P; Huang T; Liu P; Shi S; Chen Q; Li L; Shen J
    J Colloid Interface Sci; 2016 Oct; 480():91-101. PubMed ID: 27416290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance?
    Quintana R; Jańczewski D; Vasantha VA; Jana S; Lee SS; Parra-Velandia FJ; Guo S; Parthiban A; Teo SL; Vancso GJ
    Colloids Surf B Biointerfaces; 2014 Aug; 120():118-24. PubMed ID: 24907581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.
    Lego B; Skene WG; Giasson S
    Langmuir; 2008 Jan; 24(2):379-82. PubMed ID: 18076200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling.
    Yang WJ; Pranantyo D; Neoh KG; Kang ET; Teo SL; Rittschof D
    Biomacromolecules; 2012 Sep; 13(9):2769-80. PubMed ID: 22924814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling.
    Ye Q; He B; Zhang Y; Zhang J; Liu S; Zhou F
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39171-39178. PubMed ID: 31559815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of hydrogen-terminated silicon via surface-initiated atom-transfer radical polymerization and derivatization of the polymer brushes.
    Xu D; Yu WH; Kang ET; Neoh KG
    J Colloid Interface Sci; 2004 Nov; 279(1):78-87. PubMed ID: 15380414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinitiated alkyne-azide click and radical cross-linking reactions for the patterning of PEG hydrogels.
    Chen RT; Marchesan S; Evans RA; Styan KE; Such GK; Postma A; McLean KM; Muir BW; Caruso F
    Biomacromolecules; 2012 Mar; 13(3):889-95. PubMed ID: 22332589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.