These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 22888976)
1. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. Aijaz A; Karkamkar A; Choi YJ; Tsumori N; Rönnebro E; Autrey T; Shioyama H; Xu Q J Am Chem Soc; 2012 Aug; 134(34):13926-9. PubMed ID: 22888976 [TBL] [Abstract][Full Text] [Related]
2. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. Zhu QL; Li J; Xu Q J Am Chem Soc; 2013 Jul; 135(28):10210-3. PubMed ID: 23805877 [TBL] [Abstract][Full Text] [Related]
3. Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework. Yadav M; Xu Q Chem Commun (Camb); 2013 Apr; 49(32):3327-9. PubMed ID: 23505626 [TBL] [Abstract][Full Text] [Related]
4. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. Gu X; Lu ZH; Jiang HL; Akita T; Xu Q J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819 [TBL] [Abstract][Full Text] [Related]
5. Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane. Li J; Zhu QL; Xu Q Chem Commun (Camb); 2014 Jun; 50(44):5899-901. PubMed ID: 24760206 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of ultrafine bimetallic Ni-Pt nanoparticles inside the pores of metal-organic frameworks as efficient catalysts for dehydrogenation of alkaline solution of hydrazine. Cao N; Yang L; Dai H; Liu T; Su J; Wu X; Luo W; Cheng G Inorg Chem; 2014 Oct; 53(19):10122-8. PubMed ID: 25197778 [TBL] [Abstract][Full Text] [Related]
7. Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane. Wang S; Zhang D; Ma Y; Zhang H; Gao J; Nie Y; Sun X ACS Appl Mater Interfaces; 2014 Aug; 6(15):12429-35. PubMed ID: 25058566 [TBL] [Abstract][Full Text] [Related]
9. Non-Noble-Metal Nanoparticle Supported on Metal-Organic Framework as an Efficient and Durable Catalyst for Promoting H2 Production from Ammonia Borane under Visible Light Irradiation. Wen M; Cui Y; Kuwahara Y; Mori K; Yamashita H ACS Appl Mater Interfaces; 2016 Aug; 8(33):21278-84. PubMed ID: 27478964 [TBL] [Abstract][Full Text] [Related]
11. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. Jiang HL; Liu B; Akita T; Haruta M; Sakurai H; Xu Q J Am Chem Soc; 2009 Aug; 131(32):11302-3. PubMed ID: 19637919 [TBL] [Abstract][Full Text] [Related]
12. Defective Pt nanoparticles encapsulated in mesoporous metal-organic frameworks for enhanced catalysis. Wang Q; Wang XS; Chen CH; Yang X; Huang YB; Cao R Chem Commun (Camb); 2018 Aug; 54(64):8822-8825. PubMed ID: 30043031 [TBL] [Abstract][Full Text] [Related]
13. Organophophorous ester degradation by chromium(III) terephthalate metal-organic framework (MIL-101) chelated to N,N-dimethylaminopyridine and related aminopyridines. Wang S; Bromberg L; Schreuder-Gibson H; Hatton TA ACS Appl Mater Interfaces; 2013 Feb; 5(4):1269-78. PubMed ID: 23339453 [TBL] [Abstract][Full Text] [Related]
14. Immobilizing highly catalytically active noble metal nanoparticles on reduced graphene oxide: a non-noble metal sacrificial approach. Chen Y; Zhu QL; Tsumori N; Xu Q J Am Chem Soc; 2015 Jan; 137(1):106-9. PubMed ID: 25543717 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons. Somorjai GA; Bratlie KM; Montano MO; Park JY J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389 [TBL] [Abstract][Full Text] [Related]
16. Highly Efficient Catalytic Hydrogen Evolution from Ammonia Borane Using the Synergistic Effect of Crystallinity and Size of Noble-Metal-Free Nanoparticles Supported by Porous Metal-Organic Frameworks. Liu P; Gu X; Kang K; Zhang H; Cheng J; Su H ACS Appl Mater Interfaces; 2017 Mar; 9(12):10759-10767. PubMed ID: 28271874 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Ultrafine and Highly Dispersed Metal Nanoparticles Confined in a Thioether-Containing Covalent Organic Framework and Their Catalytic Applications. Lu S; Hu Y; Wan S; McCaffrey R; Jin Y; Gu H; Zhang W J Am Chem Soc; 2017 Nov; 139(47):17082-17088. PubMed ID: 29095604 [TBL] [Abstract][Full Text] [Related]
18. Encapsulating Pt Nanoparticles through Transforming Fe Chen X; Zhang Y; Zhao Y; Wang S; Liu L; Xu W; Guo Z; Wang S; Liu Y; Zhang J Inorg Chem; 2019 Sep; 58(18):12433-12440. PubMed ID: 31522504 [TBL] [Abstract][Full Text] [Related]
19. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Li PZ; Aranishi K; Xu Q Chem Commun (Camb); 2012 Mar; 48(26):3173-5. PubMed ID: 22343827 [TBL] [Abstract][Full Text] [Related]
20. Amine-functionalized MIL-53(Al) with embedded ruthenium nanoparticles as a highly efficient catalyst for the hydrolytic dehydrogenation of ammonia borane. Zhang S; Zhou L; Chen M RSC Adv; 2018 Mar; 8(22):12282-12291. PubMed ID: 35539406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]