These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
632 related articles for article (PubMed ID: 22889371)
1. Phenolic antioxidants in some Vigna species of legumes and their distinct inhibitory effects on α-glucosidase and pancreatic lipase activities. Sreerama YN; Takahashi Y; Yamaki K J Food Sci; 2012 Sep; 77(9):C927-33. PubMed ID: 22889371 [TBL] [Abstract][Full Text] [Related]
2. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Tan Y; Chang SKC; Zhang Y Food Chem; 2017 Jan; 214():259-268. PubMed ID: 27507474 [TBL] [Abstract][Full Text] [Related]
3. Phenolic-rich extracts from selected tropical underutilized legumes inhibit α-amylase, α-glucosidase, and angiotensin I converting enzyme in vitro. Ademiluyi AO; Oboh G J Basic Clin Physiol Pharmacol; 2012 Jan; 23(1):17-25. PubMed ID: 22865445 [TBL] [Abstract][Full Text] [Related]
4. Antioxidant and antidiabetic activities of black mung bean (Vigna radiata L.). Yao Y; Yang X; Tian J; Liu C; Cheng X; Ren G J Agric Food Chem; 2013 Aug; 61(34):8104-9. PubMed ID: 23947804 [TBL] [Abstract][Full Text] [Related]
5. In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): chemopreventative capacity and inhibitory effects on the angiotensin-converting enzyme, α-glucosidase and lipase. Siah SD; Konczak I; Agboola S; Wood JA; Blanchard CL Br J Nutr; 2012 Aug; 108 Suppl 1():S123-34. PubMed ID: 22916808 [TBL] [Abstract][Full Text] [Related]
6. In vitro and in vivo Inhibitory Activity of C-glycoside Flavonoid Extracts from Mung Bean Coat on Pancreatic Lipase and α-glucosidase. Ruan JC; Peng RY; Chen YT; Xu HX; Zhang QF Plant Foods Hum Nutr; 2023 Jun; 78(2):439-444. PubMed ID: 37351712 [TBL] [Abstract][Full Text] [Related]
7. Antioxidant activity of polyphenols of adzuki bean (Vigna angularis) germinated in abiotic stress conditions. Złotek U; Szymanowska U; Baraniak B; Karaś M Acta Sci Pol Technol Aliment; 2015; 14(1):55-63. PubMed ID: 28068020 [TBL] [Abstract][Full Text] [Related]
8. Free radical scavenging, α-glucosidase inhibitory and lipase inhibitory activities of eighteen Sudanese medicinal plants. Elbashir SMI; Devkota HP; Wada M; Kishimoto N; Moriuchi M; Shuto T; Misumi S; Kai H; Watanabe T BMC Complement Altern Med; 2018 Oct; 18(1):282. PubMed ID: 30340582 [TBL] [Abstract][Full Text] [Related]
9. Phenolic Composition and α-Glucosidase Inhibition of Leaves from Chilean Bean Landraces. Alarcón-Espósito J; Nina N; Theoduloz C; Burgos-Edwards A; Paillan H; Schmeda-Hirschmann G Plant Foods Hum Nutr; 2022 Mar; 77(1):135-140. PubMed ID: 35182308 [TBL] [Abstract][Full Text] [Related]
10. In vitro antioxidant activity of extracts from common legumes. Zhao Y; Du SK; Wang H; Cai M Food Chem; 2014; 152():462-6. PubMed ID: 24444962 [TBL] [Abstract][Full Text] [Related]
11. Biological potential of sixteen legumes in China. Yao Y; Cheng X; Wang L; Wang S; Ren G Int J Mol Sci; 2011; 12(10):7048-58. PubMed ID: 22072935 [TBL] [Abstract][Full Text] [Related]
12. Antioxidant capacity of food mixtures is not correlated with their antiproliferative activity against MCF-7 breast cancer cells. Wang S; Zhu F; Meckling KA; Marcone MF J Med Food; 2013 Dec; 16(12):1138-45. PubMed ID: 24328703 [TBL] [Abstract][Full Text] [Related]
13. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Zhang B; Deng Z; Ramdath DD; Tang Y; Chen PX; Liu R; Liu Q; Tsao R Food Chem; 2015 Apr; 172():862-72. PubMed ID: 25442631 [TBL] [Abstract][Full Text] [Related]
14. Phenolic Composition, Antioxidant Properties, and Inhibition toward Digestive Enzymes with Molecular Docking Analysis of Different Fractions from Prinsepia utilis Royle Fruits. Zhang X; Jia Y; Ma Y; Cheng G; Cai S Molecules; 2018 Dec; 23(12):. PubMed ID: 30572648 [TBL] [Abstract][Full Text] [Related]
15. Biological Activities of Camelina and Sophia Seeds Phenolics: Inhibition of LDL Oxidation, DNA Damage, and Pancreatic Lipase and α-Glucosidase Activities. Rahman MJ; Ambigaipalan P; Shahidi F J Food Sci; 2018 Jan; 83(1):237-245. PubMed ID: 29278656 [TBL] [Abstract][Full Text] [Related]
16. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Luo J; Cai W; Wu T; Xu B Food Chem; 2016 Jun; 201():350-60. PubMed ID: 26868587 [TBL] [Abstract][Full Text] [Related]
17. The multi-targets integrated fingerprinting for screening anti-diabetic compounds from a Chinese medicine Jinqi Jiangtang Tablet. Chang YX; Ge AH; Donnapee S; Li J; Bai Y; Liu J; He J; Yang X; Song LJ; Zhang BL; Gao XM J Ethnopharmacol; 2015 Apr; 164():210-22. PubMed ID: 25698248 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe Afolabi OB; Oloyede OI; Agunbiade SO J Integr Med; 2018 May; 16(3):192-198. PubMed ID: 29706572 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of antioxidant and α-glucosidase inhibitory activities of some subtropical plants. Prihantini AI; Tachibana S; Itoh K Pak J Biol Sci; 2014 Oct; 17(10):1106-14. PubMed ID: 26027154 [TBL] [Abstract][Full Text] [Related]
20. Phenolic Compounds, Antioxidant Activities, and Inhibitory Effects on Digestive Enzymes of Different Cultivars of Okra ( Wu DT; Nie XR; Shen DD; Li HY; Zhao L; Zhang Q; Lin DR; Qin W Molecules; 2020 Mar; 25(6):. PubMed ID: 32168896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]