These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22889490)

  • 1. A population of selected renal cells augments renal function and extends survival in the ZSF1 model of progressive diabetic nephropathy.
    Kelley R; Bruce A; Spencer T; Werdin E; Ilagan R; Choudhury S; Rivera E; Wallace S; Guthrie K; Jayo M; Xu F; Rao AN; Humphreys BD; Presnell S; Bertram T
    Cell Transplant; 2013; 22(6):1023-39. PubMed ID: 22889490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetic nephropathy and long-term treatment effects of rosiglitazone and enalapril in obese ZSF1 rats.
    Bilan VP; Salah EM; Bastacky S; Jones HB; Mayers RM; Zinker B; Poucher SM; Tofovic SP
    J Endocrinol; 2011 Sep; 210(3):293-308. PubMed ID: 21680617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Slowing the progression of chronic renal insufficiency with captopril in rats with spontaneous arterial hypertension and adriamycin nephropathy].
    Jovanović DB; Jovović Dj; Varagić J; Dimitrijević J; Dragojlović Z; Djukanović L
    Srp Arh Celok Lek; 2002; 130(3-4):73-80. PubMed ID: 12154518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel dual PPAR-γ agonist/sEH inhibitor treats diabetic complications in a rat model of type 2 diabetes.
    Hye Khan MA; Kolb L; Skibba M; Hartmann M; Blöcher R; Proschak E; Imig JD
    Diabetologia; 2018 Oct; 61(10):2235-2246. PubMed ID: 30032428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Praliciguat inhibits progression of diabetic nephropathy in ZSF1 rats and suppresses inflammation and apoptosis in human renal proximal tubular cells.
    Liu G; Shea CM; Jones JE; Price GM; Warren W; Lonie E; Yan S; Currie MG; Profy AT; Masferrer JL; Zimmer DP
    Am J Physiol Renal Physiol; 2020 Oct; 319(4):F697-F711. PubMed ID: 32865013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early renal injury induced by caffeine consumption in obese, diabetic ZSF1 rats.
    Tofovic SP; Salah EM; Jackson EK; Melhem M
    Ren Fail; 2007; 29(7):891-902. PubMed ID: 17994459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrin antagonist (MK-0429) decreases proteinuria and renal fibrosis in the ZSF1 rat diabetic nephropathy model.
    Zhou X; Zhang J; Haimbach R; Zhu W; Mayer-Ezell R; Garcia-Calvo M; Smith E; Price O; Kan Y; Zycband E; Zhu Y; Hoek M; Cox JM; Ma L; Kelley DE; Pinto S
    Pharmacol Res Perspect; 2017 Oct; 5(5):. PubMed ID: 28971604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal Changes in Measured Glomerular Filtration Rate, Renal Fibrosis and Biomarkers in a Rat Model of Type 2 Diabetic Nephropathy.
    Su Z; Widomski D; Ma J; Namovic M; Nikkel A; Leys L; Olson L; Salte K; Donnelly-Roberts D; Esbenshade T; McGaraughty S
    Am J Nephrol; 2016; 44(5):339-353. PubMed ID: 27736813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic blood pressure load and nephropathy in the ZSF1 (fa/fa cp) model of type 2 diabetes.
    Griffin KA; Abu-Naser M; Abu-Amarah I; Picken M; Williamson GA; Bidani AK
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1605-13. PubMed ID: 17728379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution molecular and histological analysis of renal disease progression in ZSF1 fa/faCP rats, a model of type 2 diabetic nephropathy.
    Dower K; Zhao S; Schlerman FJ; Savary L; Campanholle G; Johnson BG; Xi L; Nguyen V; Zhan Y; Lech MP; Wang J; Nie Q; Karsdal MA; Genovese F; Boucher G; Brown TP; Zhang B; Homer BL; Martinez RV
    PLoS One; 2017; 12(7):e0181861. PubMed ID: 28746409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of glomerular hyperfiltration and renal hypertrophy by an angiotensin converting enzyme inhibitor prevents the progression of renal damage in hypertensive diabetic rats.
    Fabris B; Candido R; Armini L; Fischetti F; Calci M; Bardelli M; Fazio M; Campanacci L; Carretta R
    J Hypertens; 1999 Dec; 17(12 Pt 2):1925-31. PubMed ID: 10703891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors.
    Sugimoto H; Grahovac G; Zeisberg M; Kalluri R
    Diabetes; 2007 Jul; 56(7):1825-33. PubMed ID: 17456853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal functional responses in diabetic nephropathy following chronic bilateral renal denervation.
    Yao Y; Davis G; Harrison JC; Walker RJ; Sammut IA
    Auton Neurosci; 2017 May; 204():98-104. PubMed ID: 27727024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Methoxyestradiol and 2-ethoxyestradiol retard the progression of renal disease in aged, obese, diabetic ZSF1 rats.
    Zhang X; Jia Y; Jackson EK; Tofovic SP
    J Cardiovasc Pharmacol; 2007 Jan; 49(1):56-63. PubMed ID: 17261964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic bilateral renal denervation attenuates renal injury in a transgenic rat model of diabetic nephropathy.
    Yao Y; Fomison-Nurse IC; Harrison JC; Walker RJ; Davis G; Sammut IA
    Am J Physiol Renal Physiol; 2014 Aug; 307(3):F251-62. PubMed ID: 24899056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SGLT2 Inhibitors and the Diabetic Kidney.
    Fioretto P; Zambon A; Rossato M; Busetto L; Vettor R
    Diabetes Care; 2016 Aug; 39 Suppl 2():S165-71. PubMed ID: 27440829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue expression of tubular injury markers is associated with renal function decline in diabetic nephropathy.
    Hwang S; Park J; Kim J; Jang HR; Kwon GY; Huh W; Kim YG; Kim DJ; Oh HY; Lee JE
    J Diabetes Complications; 2017 Dec; 31(12):1704-1709. PubMed ID: 29037450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevention of progression of diabetic nephropathy by the SGLT2 inhibitor ipragliflozin in uninephrectomized type 2 diabetic mice.
    Tahara A; Takasu T
    Eur J Pharmacol; 2018 Jul; 830():68-75. PubMed ID: 29702076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production.
    Prabhakar S; Starnes J; Shi S; Lonis B; Tran R
    J Am Soc Nephrol; 2007 Nov; 18(11):2945-52. PubMed ID: 17928507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Activation of AMPK
    Salatto CT; Miller RA; Cameron KO; Cokorinos E; Reyes A; Ward J; Calabrese MF; Kurumbail RG; Rajamohan F; Kalgutkar AS; Tess DA; Shavnya A; Genung NE; Edmonds DJ; Jatkar A; Maciejewski BS; Amaro M; Gandhok H; Monetti M; Cialdea K; Bollinger E; Kreeger JM; Coskran TM; Opsahl AC; Boucher GG; Birnbaum MJ; DaSilva-Jardine P; Rolph T
    J Pharmacol Exp Ther; 2017 May; 361(2):303-311. PubMed ID: 28289077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.