These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 22889623)
1. Transition metal modified and partially calcined inorganic-organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water. Cabrera-Lafaurie WA; Román FR; Hernández-Maldonado AJ J Colloid Interface Sci; 2012 Nov; 386(1):381-91. PubMed ID: 22889623 [TBL] [Abstract][Full Text] [Related]
2. Single and multi-component adsorption of salicylic acid, clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic-organic pillared clay fixed beds. Cabrera-Lafaurie WA; Román FR; Hernández-Maldonado AJ J Hazard Mater; 2015 Jan; 282():174-82. PubMed ID: 24680542 [TBL] [Abstract][Full Text] [Related]
3. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. Hasan Z; Jeon J; Jhung SH J Hazard Mater; 2012 Mar; 209-210():151-7. PubMed ID: 22277335 [TBL] [Abstract][Full Text] [Related]
4. A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6. Bhadra BN; Jhung SH J Hazard Mater; 2017 Oct; 340():179-188. PubMed ID: 28715741 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, characterization and adsorption properties of diethylenetriamine-modified hypercrosslinked resins for efficient removal of salicylic acid from aqueous solution. Huang J; Jin X; Mao J; Yuan B; Deng R; Deng S J Hazard Mater; 2012 May; 217-218():406-15. PubMed ID: 22482881 [TBL] [Abstract][Full Text] [Related]
6. Comparison of modified montmorillonite adsorbents. Part II: The effects of the type of raw clays and modification conditions on the adsorption performance. Jiang JQ; Zeng Z Chemosphere; 2003 Oct; 53(1):53-62. PubMed ID: 12892666 [TBL] [Abstract][Full Text] [Related]
7. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials--determination of intermediates and reaction pathways. Doll TE; Frimmel FH Water Res; 2004 Feb; 38(4):955-64. PubMed ID: 14769415 [TBL] [Abstract][Full Text] [Related]
8. Organoclays in water cause expansion that facilitates caffeine adsorption. Okada T; Oguchi J; Yamamoto K; Shiono T; Fujita M; Iiyama T Langmuir; 2015; 31(1):180-7. PubMed ID: 25522121 [TBL] [Abstract][Full Text] [Related]
9. Photocatalytic degradation of clofibric acid, carbamazepine and iomeprol using conglomerated TiO2 and activated carbon in aqueous suspension. Ziegmann M; Frimmel FH Water Sci Technol; 2010; 61(1):273-81. PubMed ID: 20057114 [TBL] [Abstract][Full Text] [Related]
10. Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Huang Q; Liang W; Cai P Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):209-14. PubMed ID: 16198547 [TBL] [Abstract][Full Text] [Related]
11. Removal of fenhexamid and pyrimethanil from aqueous solutions by clays and organoclays. Baglieri A; Borzí D; Abbate C; Négre M; Gennari M J Environ Sci Health B; 2009 Mar; 44(3):220-5. PubMed ID: 19280474 [TBL] [Abstract][Full Text] [Related]
12. Fixed-bed column studies of pentachlorophenol removal by use of alginate-encapsulated pillared clay microbeads. Lezehari M; Baudu M; Bouras O; Basly JP J Colloid Interface Sci; 2012 Aug; 379(1):101-6. PubMed ID: 22608151 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the hydrophobicity of mesoporous silicas and clays with silica pillars by water adsorption and DRIFT. Pires J; Pinto M; Estella J; Echeverría JC J Colloid Interface Sci; 2008 Jan; 317(1):206-13. PubMed ID: 17945244 [TBL] [Abstract][Full Text] [Related]
14. Fate and mobility of pharmaceuticals in solid matrices. Drillia P; Stamatelatou K; Lyberatos G Chemosphere; 2005 Aug; 60(8):1034-44. PubMed ID: 15993150 [TBL] [Abstract][Full Text] [Related]
15. Removal of arsenite from aqueous solutions by anionic clays. You YW; Zhao HT; Vance GF Environ Technol; 2001 Dec; 22(12):1447-57. PubMed ID: 11873880 [TBL] [Abstract][Full Text] [Related]
16. Environmental applications of inorganic-organic clays for recalcitrant organic pollutants removal: Bisphenol A. Rathnayake SI; Xi Y; Frost RL; Ayoko GA J Colloid Interface Sci; 2016 May; 470():183-195. PubMed ID: 26945114 [TBL] [Abstract][Full Text] [Related]
17. Sorption and desorption of carbamazepine from water by smectite clays. Zhang W; Ding Y; Boyd SA; Teppen BJ; Li H Chemosphere; 2010 Nov; 81(7):954-60. PubMed ID: 20797761 [TBL] [Abstract][Full Text] [Related]
18. Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Dordio A; Carvalho AJ; Teixeira DM; Dias CB; Pinto AP Bioresour Technol; 2010 Feb; 101(3):886-92. PubMed ID: 19783427 [TBL] [Abstract][Full Text] [Related]
19. Paraquat adsorption onto clays and organoclays from aqueous solution. Seki Y; Yurdakoç K J Colloid Interface Sci; 2005 Jul; 287(1):1-5. PubMed ID: 15914142 [TBL] [Abstract][Full Text] [Related]
20. Biosorbent for tungsten species removal from water: effects of co-occurring inorganic species. Gecol H; Ergican E; Miakatsindila P J Colloid Interface Sci; 2005 Dec; 292(2):344-53. PubMed ID: 15993417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]