BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22889876)

  • 1. Random forests for genetic association studies.
    Goldstein BA; Polley EC; Briggs FB
    Stat Appl Genet Mol Biol; 2011; 10(1):32. PubMed ID: 22889876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings.
    Goldstein BA; Hubbard AE; Cutler A; Barcellos LF
    BMC Genet; 2010 Jun; 11():49. PubMed ID: 20546594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.
    Wang Y; Goh W; Wong L; Montana G;
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S6. PubMed ID: 24564704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling X Chromosome Data Using Random Forests: Conquering Sex Bias.
    Winham SJ; Jenkins GD; Biernacka JM
    Genet Epidemiol; 2016 Feb; 40(2):123-32. PubMed ID: 26639183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictor correlation impacts machine learning algorithms: implications for genomic studies.
    Nicodemus KK; Malley JD
    Bioinformatics; 2009 Aug; 25(15):1884-90. PubMed ID: 19460890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle.
    Yao C; Spurlock DM; Armentano LE; Page CD; VandeHaar MJ; Bickhart DM; Weigel KA
    J Dairy Sci; 2013 Oct; 96(10):6716-29. PubMed ID: 23932129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Wide Association Study to predict severe asthma exacerbations in children using random forests classifiers.
    Xu M; Tantisira KG; Wu A; Litonjua AA; Chu JH; Himes BE; Damask A; Weiss ST
    BMC Med Genet; 2011 Jun; 12():90. PubMed ID: 21718536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated approach to reduce the impact of minor allele frequency and linkage disequilibrium on variable importance measures for genome-wide data.
    Walters R; Laurin C; Lubke GH
    Bioinformatics; 2012 Oct; 28(20):2615-23. PubMed ID: 22847933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning in genome-wide association studies.
    Szymczak S; Biernacka JM; Cordell HJ; González-Recio O; König IR; Zhang H; Sun YV
    Genet Epidemiol; 2009; 33 Suppl 1():S51-7. PubMed ID: 19924717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multigenic modeling of complex disease by random forests.
    Sun YV
    Adv Genet; 2010; 72():73-99. PubMed ID: 21029849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable selection method for the identification of epistatic models.
    Holzinger ER; Szymczak S; Dasgupta A; Malley J; Li Q; Bailey-Wilson JE
    Pac Symp Biocomput; 2015; 20():195-206. PubMed ID: 25592581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ranking causal variants and associated regions in genome-wide association studies by the support vector machine and random forest.
    Roshan U; Chikkagoudar S; Wei Z; Wang K; Hakonarson H
    Nucleic Acids Res; 2011 May; 39(9):e62. PubMed ID: 21317188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms.
    Ren Z; Hu Y; Xu L
    Respir Res; 2019 Oct; 20(1):220. PubMed ID: 31619240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning approaches for the discovery of gene-gene interactions in disease data.
    Upstill-Goddard R; Eccles D; Fliege J; Collins A
    Brief Bioinform; 2013 Mar; 14(2):251-60. PubMed ID: 22611119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide prediction of discrete traits using Bayesian regressions and machine learning.
    González-Recio O; Forni S
    Genet Sel Evol; 2011 Feb; 43(1):7. PubMed ID: 21329522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRM: a powerful two-stage machine learning approach for identifying SNP-SNP interactions.
    Lin HY; Chen YA; Tsai YY; Qu X; Tseng TS; Park JY
    Ann Hum Genet; 2012 Jan; 76(1):53-62. PubMed ID: 22150548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning for detecting gene-gene interactions: a review.
    McKinney BA; Reif DM; Ritchie MD; Moore JH
    Appl Bioinformatics; 2006; 5(2):77-88. PubMed ID: 16722772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Missing data imputation and haplotype phase inference for genome-wide association studies.
    Browning SR
    Hum Genet; 2008 Dec; 124(5):439-50. PubMed ID: 18850115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Markov blanket-based method for detecting causal SNPs in GWAS.
    Han B; Park M; Chen XW
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S5. PubMed ID: 20438652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.