These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 22890090)

  • 1. Contributions of the striatum to learning, motivation, and performance: an associative account.
    Liljeholm M; O'Doherty JP
    Trends Cogn Sci; 2012 Sep; 16(9):467-75. PubMed ID: 22890090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rewarding value of good motor performance in the context of monetary incentives.
    Lutz K; Pedroni A; Nadig K; Luechinger R; Jäncke L
    Neuropsychologia; 2012 Jul; 50(8):1739-47. PubMed ID: 22569215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of associative learning in the hippocampal-striatal circuit based on item-set similarity.
    Stark SM; Frithsen A; Mattfeld AT; Stark CEL
    Cortex; 2018 Dec; 109():60-73. PubMed ID: 30300757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elderly adults show higher ventral striatal activation in response to motor performance related rewards than young adults.
    Widmer M; Stulz S; Luft AR; Lutz K
    Neurosci Lett; 2017 Nov; 661():18-22. PubMed ID: 28939388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
    Haruno M; Kawato M
    Neural Netw; 2006 Oct; 19(8):1242-54. PubMed ID: 16987637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitation of visuomotor associative learning by the basal ganglia.
    Sheth SA; Mian MK; Abuelem T; Gale J; Eskandar EN
    Clin Neurosurg; 2010; 57():145-50. PubMed ID: 21280508
    [No Abstract]   [Full Text] [Related]  

  • 8. Striatal dopamine D1 receptor suppression impairs reward-associative learning.
    Higa KK; Young JW; Ji B; Nichols DE; Geyer MA; Zhou X
    Behav Brain Res; 2017 Apr; 323():100-110. PubMed ID: 28143767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic encoding of action selection by the medial striatum.
    Kimchi EY; Laubach M
    J Neurosci; 2009 Mar; 29(10):3148-59. PubMed ID: 19279252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix.
    Wickens JR; Budd CS; Hyland BI; Arbuthnott GW
    Ann N Y Acad Sci; 2007 May; 1104():192-212. PubMed ID: 17416920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory.
    Mattfeld AT; Stark CE
    Hippocampus; 2015 Aug; 25(8):900-11. PubMed ID: 25560298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of reward processing in adolescents with a history of inhibited temperament.
    Bar-Haim Y; Fox NA; Benson B; Guyer AE; Williams A; Nelson EE; Perez-Edgar K; Pine DS; Ernst M
    Psychol Sci; 2009 Aug; 20(8):1009-18. PubMed ID: 19594857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How the aging brain translates motivational incentive into action: the role of individual differences in striato-cortical white matter pathways.
    Harsay HA; Cohen MX; Reneman L; Ridderinkhof KR
    Dev Cogn Neurosci; 2011 Oct; 1(4):530-9. PubMed ID: 22436569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional connectivity of the striatum links motivation to action control in humans.
    Harsay HA; Cohen MX; Oosterhof NN; Forstmann BU; Mars RB; Ridderinkhof KR
    J Neurosci; 2011 Jul; 31(29):10701-11. PubMed ID: 21775613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of cortico-striatal effective connectivity during visuomotor learning.
    Toni I; Rowe J; Stephan KE; Passingham RE
    Cereb Cortex; 2002 Oct; 12(10):1040-7. PubMed ID: 12217967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action.
    Balleine BW; O'Doherty JP
    Neuropsychopharmacology; 2010 Jan; 35(1):48-69. PubMed ID: 19776734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational perspectives on forebrain microcircuits implicated in reinforcement learning, action selection, and cognitive control.
    Bullock D; Tan CO; John YJ
    Neural Netw; 2009; 22(5-6):757-65. PubMed ID: 19592218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning.
    Gerraty RT; Davidow JY; Foerde K; Galvan A; Bassett DS; Shohamy D
    J Neurosci; 2018 Mar; 38(10):2442-2453. PubMed ID: 29431652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced striatal activation in response to rewarding motor performance feedback after stroke.
    Widmer M; Lutz K; Luft AR
    Neuroimage Clin; 2019; 24():102036. PubMed ID: 31698315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike-timing dependent plasticity in striatal interneurons.
    Fino E; Venance L
    Neuropharmacology; 2011 Apr; 60(5):780-8. PubMed ID: 21262240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.