These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22890186)

  • 1. The role of the superficial region in determining the dynamic properties of articular cartilage.
    Gannon AR; Nagel T; Kelly DJ
    Osteoarthritis Cartilage; 2012 Nov; 20(11):1417-25. PubMed ID: 22890186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The changing role of the superficial region in determining the dynamic compressive properties of articular cartilage during postnatal development.
    Gannon AR; Nagel T; Bell AP; Avery NC; Kelly DJ
    Osteoarthritis Cartilage; 2015 Jun; 23(6):975-84. PubMed ID: 25680651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2015 Jan; 48(1):166-70. PubMed ID: 25465194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage.
    Silverberg JL; Dillavou S; Bonassar L; Cohen I
    J Orthop Res; 2013 May; 31(5):686-91. PubMed ID: 23280608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates.
    Julkunen P; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2010 Apr; 9(2):237-45. PubMed ID: 19680701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage.
    Schinagl RM; Gurskis D; Chen AC; Sah RL
    J Orthop Res; 1997 Jul; 15(4):499-506. PubMed ID: 9379258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loading and knee alignment have significant influence on cartilage MRI T2 in porcine knee joints.
    Shiomi T; Nishii T; Tanaka H; Yamazaki Y; Murase K; Myoui A; Yoshikawa H; Sugano N
    Osteoarthritis Cartilage; 2010 Jul; 18(7):902-8. PubMed ID: 20472084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The micromechanics of the superficial zone of articular cartilage.
    Mansfield JC; Bell JS; Winlove CP
    Osteoarthritis Cartilage; 2015 Oct; 23(10):1806-16. PubMed ID: 26050867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs.
    Treppo S; Koepp H; Quan EC; Cole AA; Kuettner KE; Grodzinsky AJ
    J Orthop Res; 2000 Sep; 18(5):739-48. PubMed ID: 11117295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cartilage interstitial fluid load support in unconfined compression.
    Park S; Krishnan R; Nicoll SB; Ateshian GA
    J Biomech; 2003 Dec; 36(12):1785-96. PubMed ID: 14614932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic compressive properties of the mandibular condylar cartilage.
    Tanaka E; Yamano E; Dalla-Bona DA; Watanabe M; Inubushi T; Shirakura M; Sano R; Takahashi K; van Eijden T; Tanne K
    J Dent Res; 2006 Jun; 85(6):571-5. PubMed ID: 16723658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression.
    Shirazi R; Shirazi-Adl A; Hurtig M
    J Biomech; 2008 Dec; 41(16):3340-8. PubMed ID: 19022449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients.
    Jeon JE; Schrobback K; Hutmacher DW; Klein TJ
    Osteoarthritis Cartilage; 2012 Aug; 20(8):906-15. PubMed ID: 22548797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation of chondrocytes in articular cartilage under compressive load: a morphological study.
    Kääb MJ; Richards RG; Ito K; ap Gwynn I; Nötzli HP
    Cells Tissues Organs; 2003; 175(3):133-9. PubMed ID: 14663156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.