These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 22890295)
1. Polyprotic acid catholyte for high capacity dual-electrolyte Li-air batteries. Li L; Zhao X; Fu Y; Manthiram A Phys Chem Chem Phys; 2012 Oct; 14(37):12737-40. PubMed ID: 22890295 [TBL] [Abstract][Full Text] [Related]
2. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries. Ng SH; Tran N; Bramnik KG; Hibst H; Novák P Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463 [TBL] [Abstract][Full Text] [Related]
3. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. Liu J; Xia H; Xue D; Lu L J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911 [TBL] [Abstract][Full Text] [Related]
4. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
5. Iron(III) phosphates obtained by thermal treatment of the Tavorite-type FePO4·H2O material: structures and electrochemical properties in lithium batteries. Marx N; Bourgeois L; Carlier D; Wattiaux A; Suard E; Le Cras F; Croguennec L Inorg Chem; 2012 Mar; 51(5):3146-55. PubMed ID: 22329737 [TBL] [Abstract][Full Text] [Related]
6. High capacity of an Fe-air rechargeable battery using LaGaO3-based oxide ion conductor as an electrolyte. Inoishi A; Ida S; Uratani S; Okano T; Ishihara T Phys Chem Chem Phys; 2012 Oct; 14(37):12818-22. PubMed ID: 22880205 [TBL] [Abstract][Full Text] [Related]
7. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. Viswanathan V; Thygesen KS; Hummelshøj JS; Nørskov JK; Girishkumar G; McCloskey BD; Luntz AC J Chem Phys; 2011 Dec; 135(21):214704. PubMed ID: 22149808 [TBL] [Abstract][Full Text] [Related]
8. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729 [TBL] [Abstract][Full Text] [Related]
9. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
10. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. Wu ZS; Ren W; Xu L; Li F; Cheng HM ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205 [TBL] [Abstract][Full Text] [Related]
12. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Qian J; Qiao D; Ai X; Cao Y; Yang H Chem Commun (Camb); 2012 Sep; 48(71):8931-3. PubMed ID: 22850700 [TBL] [Abstract][Full Text] [Related]
13. Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li-air batteries. Bryantsev VS; Faglioni F J Phys Chem A; 2012 Jul; 116(26):7128-38. PubMed ID: 22681046 [TBL] [Abstract][Full Text] [Related]
14. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. Li H; Wang Y; Na H; Liu H; Zhou H J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514 [TBL] [Abstract][Full Text] [Related]
15. Corrigendum: Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li(+)/H(+) Exchange in Aqueous Solutions. Ma C; Rangasamy E; Liang C; Sakamoto J; More KL; Chi M Angew Chem Int Ed Engl; 2015 Jan; 54(4):1063. PubMed ID: 26192896 [No Abstract] [Full Text] [Related]
16. Amorphous hierarchical porous GeO(x) as high-capacity anodes for Li ion batteries with very long cycling life. Wang XL; Han WQ; Chen H; Bai J; Tyson TA; Yu XQ; Wang XJ; Yang XQ J Am Chem Soc; 2011 Dec; 133(51):20692-5. PubMed ID: 22141466 [TBL] [Abstract][Full Text] [Related]
17. Structural and electrochemical characterization of nanocrystalline LI[Li0.12Ni0.32Mn(0.56)]O2 synthesized by a polymer-pyrolysis route. Yu L; Yang H; Ai X; Cao Y J Phys Chem B; 2005 Jan; 109(3):1148-54. PubMed ID: 16851074 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical property: Structure relationships in monoclinic Li(3-y)V2(PO4)3. Yin SC; Grondey H; Strobel P; Anne M; Nazar LF J Am Chem Soc; 2003 Aug; 125(34):10402-11. PubMed ID: 12926965 [TBL] [Abstract][Full Text] [Related]
19. Mg-air oxygen shuttle batteries using a ZrO2-based oxide ion-conducting electrolyte. Inoishi A; Ju YW; Ida S; Ishihara T Chem Commun (Camb); 2013 May; 49(41):4691-3. PubMed ID: 23589820 [TBL] [Abstract][Full Text] [Related]
20. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Wang HG; Ma DL; Huang Y; Zhang XB Chemistry; 2012 Jul; 18(29):8987-93. PubMed ID: 22689094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]