These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 22890711)

  • 1. Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis.
    Yoshida Y; Jain SS; McFarlan JT; Snook LA; Chabowski A; Bonen A
    J Physiol; 2013 Sep; 591(18):4415-26. PubMed ID: 22890711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation.
    McFarlan JT; Yoshida Y; Jain SS; Han XX; Snook LA; Lally J; Smith BK; Glatz JF; Luiken JJ; Sayer RA; Tupling AR; Chabowski A; Holloway GP; Bonen A
    J Biol Chem; 2012 Jul; 287(28):23502-16. PubMed ID: 22584574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caffeine-stimulated fatty acid oxidation is blunted in CD36 null mice.
    Lally JSV; Jain SS; Han XX; Snook LA; Glatz JFC; Luiken JJFP; McFarlan J; Holloway GP; Bonen A
    Acta Physiol (Oxf); 2012 May; 205(1):71-81. PubMed ID: 22463611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FAT/CD36-null mice reveal that mitochondrial FAT/CD36 is required to upregulate mitochondrial fatty acid oxidation in contracting muscle.
    Holloway GP; Jain SS; Bezaire V; Han XX; Glatz JF; Luiken JJ; Harper ME; Bonen A
    Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R960-7. PubMed ID: 19625692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle.
    Holloway GP; Lally J; Nickerson JG; Alkhateeb H; Snook LA; Heigenhauser GJ; Calles-Escandon J; Glatz JF; Luiken JJ; Spriet LL; Bonen A
    J Physiol; 2007 Jul; 582(Pt 1):393-405. PubMed ID: 17478525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals.
    Holloway GP; Bonen A; Spriet LL
    Am J Clin Nutr; 2009 Jan; 89(1):455S-62S. PubMed ID: 19056573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview.
    Holloway GP; Luiken JJ; Glatz JF; Spriet LL; Bonen A
    Acta Physiol (Oxf); 2008 Dec; 194(4):293-309. PubMed ID: 18510711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise.
    Holloway GP; Bezaire V; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    J Physiol; 2006 Feb; 571(Pt 1):201-10. PubMed ID: 16357012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent.
    Jeppesen J; Albers PH; Rose AJ; Birk JB; Schjerling P; Dzamko N; Steinberg GR; Kiens B
    J Lipid Res; 2011 Apr; 52(4):699-711. PubMed ID: 21297178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD36 is essential for endurance improvement, changes in whole-body metabolism, and efficient PPAR-related transcriptional responses in the muscle with exercise training.
    Manio MCC; Matsumura S; Masuda D; Inoue K
    Physiol Rep; 2017 May; 5(10):e13282. PubMed ID: 28526781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.
    Momken I; Chabowski A; Dirkx E; Nabben M; Jain SS; McFarlan JT; Glatz JF; Luiken JJ; Bonen A
    Biochem J; 2017 Jan; 474(1):149-162. PubMed ID: 27827305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells.
    Sebastián D; Guitart M; García-Martínez C; Mauvezin C; Orellana-Gavaldà JM; Serra D; Gómez-Foix AM; Hegardt FG; Asins G
    J Lipid Res; 2009 Sep; 50(9):1789-99. PubMed ID: 19429947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of fatty acid transport by fatty acid translocase/CD36.
    Bonen A; Campbell SE; Benton CR; Chabowski A; Coort SL; Han XX; Koonen DP; Glatz JF; Luiken JJ
    Proc Nutr Soc; 2004 May; 63(2):245-9. PubMed ID: 15294038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons.
    Zhang J; Light AR; Hoppel CL; Campbell C; Chandler CJ; Burnett DJ; Souza EC; Casazza GA; Hughen RW; Keim NL; Newman JW; Hunter GR; Fernandez JR; Garvey WT; Harper ME; Fiehn O; Adams SH
    Exp Physiol; 2017 Jan; 102(1):48-69. PubMed ID: 27730694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid oxidation in cardiac and skeletal muscle mitochondria is unaffected by deletion of CD36.
    King KL; Stanley WC; Rosca M; Kerner J; Hoppel CL; Febbraio M
    Arch Biochem Biophys; 2007 Nov; 467(2):234-8. PubMed ID: 17904092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats.
    Bonen A; Holloway GP; Tandon NN; Han XX; McFarlan J; Glatz JF; Luiken JJ
    Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R1202-12. PubMed ID: 19675275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle.
    Talanian JL; Holloway GP; Snook LA; Heigenhauser GJ; Bonen A; Spriet LL
    Am J Physiol Endocrinol Metab; 2010 Aug; 299(2):E180-8. PubMed ID: 20484014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism.
    Georgiou DK; Dagnino-Acosta A; Lee CS; Griffin DM; Wang H; Lagor WR; Pautler RG; Dirksen RT; Hamilton SL
    J Biol Chem; 2015 Sep; 290(39):23751-65. PubMed ID: 26245899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria.
    Campbell SE; Tandon NN; Woldegiorgis G; Luiken JJ; Glatz JF; Bonen A
    J Biol Chem; 2004 Aug; 279(35):36235-41. PubMed ID: 15161924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.