These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22890851)

  • 1. Epitaxial III-V films and surfaces for photoelectrocatalysis.
    Döscher H; Supplie O; May MM; Sippel P; Heine C; Muñoz AG; Eichberger R; Lewerenz HJ; Hannappel T
    Chemphyschem; 2012 Aug; 13(12):2899-909. PubMed ID: 22890851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting.
    Sun K; Madsen K; Andersen P; Bao W; Sun Z; Wang D
    Nanotechnology; 2012 May; 23(19):194013. PubMed ID: 22539234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN.
    Deutsch TG; Koval CA; Turner JA
    J Phys Chem B; 2006 Dec; 110(50):25297-307. PubMed ID: 17165975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical and photovoltaic characteristics of amorphous-silicon-based tandem cells as photocathodes for water splitting.
    Ziegler J; Kaiser B; Jaegermann W; Urbain F; Becker JP; Smirnov V; Finger F
    Chemphyschem; 2014 Dec; 15(18):4026-31. PubMed ID: 25335095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure.
    Niu G; Capellini G; Hatami F; Di Bartolomeo A; Niermann T; Hussein EH; Schubert MA; Krause HM; Zaumseil P; Skibitzki O; Lupina G; Masselink WT; Lehmann M; Xie YH; Schroeder T
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26948-26955. PubMed ID: 27642767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting.
    Chemelewski WD; Lee HC; Lin JF; Bard AJ; Mullins CB
    J Am Chem Soc; 2014 Feb; 136(7):2843-50. PubMed ID: 24475949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.
    Hettick M; Zheng M; Lin Y; Sutter-Fella CM; Ager JW; Javey A
    J Phys Chem Lett; 2015 Jun; 6(12):2177-82. PubMed ID: 26266588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An n-Si/n-Fe2O3 heterojunction tandem photoanode for solar water splitting.
    van de Krol R; Liang Y
    Chimia (Aarau); 2013; 67(3):168-71. PubMed ID: 23574957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si.
    Naureen S; Shahid N; Dev A; Anand S
    Nanotechnology; 2013 Jun; 24(22):225301. PubMed ID: 23633475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitaxial Fe3Si films on GaAs(100) substrates by means of electron beam evaporation.
    Thomas J; Schumann J; Vinzelberg H; Arushanov E; Engelhard R; Schmidt OG; Gemming T
    Nanotechnology; 2009 Jun; 20(23):235604. PubMed ID: 19451681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epitaxial Cubic Silicon Carbide Photocathodes for Visible-Light-Driven Water Splitting.
    Han X; Heuser S; Tong X; Yang N; Guo XY; Jiang X
    Chemistry; 2020 Mar; 26(16):3586-3590. PubMed ID: 31961024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst.
    Ji L; McDaniel MD; Wang S; Posadas AB; Li X; Huang H; Lee JC; Demkov AA; Bard AJ; Ekerdt JG; Yu ET
    Nat Nanotechnol; 2015 Jan; 10(1):84-90. PubMed ID: 25437745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of Highly Mismatched III-V Heteroepitaxy Growth on (001) Silicon.
    Du Y; Xu B; Wang G; Miao Y; Li B; Kong Z; Dong Y; Wang W; Radamson HH
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar hydrogen generation with wide-band-gap semiconductors: GaP(100) photoelectrodes and surface modification.
    Kaiser B; Fertig D; Ziegler J; Klett J; Hoch S; Jaegermann W
    Chemphyschem; 2012 Aug; 13(12):3053-60. PubMed ID: 22893616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing High Performance GaP/Si Heterojunction Solar Cells.
    Zhang C; Vadiee E; Dahal S; King RR; Honsberg CB
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30507906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Si3AlP: a new promising material for solar cell absorber.
    Yang JH; Zhai Y; Liu H; Xiang H; Gong X; Wei SH
    J Am Chem Soc; 2012 Aug; 134(30):12653-7. PubMed ID: 22769022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Resolved In Situ Spectroscopy During Formation of the GaP/Si(100) Heterointerface.
    Supplie O; May MM; Steinbach G; Romanyuk O; Grosse F; Nägelein A; Kleinschmidt P; Brückner S; Hannappel T
    J Phys Chem Lett; 2015 Feb; 6(3):464-9. PubMed ID: 26261964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure of CoSi(2) films on Si(111) studied using time-resolved two-photon photoemission.
    Kutschera M; Groth T; Kentsch C; Shumay IL; Weinelt M; Fauster T
    J Phys Condens Matter; 2009 Apr; 21(13):134006. PubMed ID: 21817481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.