These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22890958)

  • 21. Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells.
    Han J; Kim H; Kim DY; Jo SM; Jang SY
    ACS Nano; 2010 Jun; 4(6):3503-9. PubMed ID: 20509667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CuIn(S,Se)(2) thin films prepared from a novel thioacetic acid-based solution and their photovoltaic application.
    Xie Y; Liu Y; Wang Y; Zhu X; Li A; Zhang L; Qin M; Lü X; Huang F
    Phys Chem Chem Phys; 2014 Apr; 16(16):7548-54. PubMed ID: 24632726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.
    Yang Y; Wang G; Zhao W; Tian Q; Huang L; Pan D
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):460-4. PubMed ID: 25494493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compositional and Interfacial Modification of Cu2 ZnSn(S,Se)4 Thin-Film Solar Cells Prepared by Electrochemical Deposition.
    Seo SW; Jeon JO; Seo JW; Yu YY; Jeong JH; Lee DK; Kim H; Ko MJ; Son HJ; Jang HW; Kim JY
    ChemSusChem; 2016 Mar; 9(5):439-44. PubMed ID: 26822494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of Precursor Compositions on the Structural and Photovoltaic Properties of Spray-Deposited Cu2 ZnSnS4 Thin Films.
    Nguyen TH; Fujikawa S; Harada T; Chantana J; Minemoto T; Nakanishi S; Ikeda S
    ChemSusChem; 2016 Sep; 9(17):2414-20. PubMed ID: 27514989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimony Doping in Solution-processed Cu2 ZnSn(S,Se)4 Solar Cells.
    Tai KF; Fu D; Chiam SY; Huan CH; Batabyal SK; Wong LH
    ChemSusChem; 2015 Oct; 8(20):3504-11. PubMed ID: 26376602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sonochemical method for preparation of copper indium sulfide nanoparticles and their application for solar cell.
    Amiri O; Salavati-Niasari M; Sabet M; Ghanbari D
    Comb Chem High Throughput Screen; 2014 Feb; 17(2):183-9. PubMed ID: 23962129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.
    Cho JW; Ismail A; Park SJ; Kim W; Yoon S; Min BK
    ACS Appl Mater Interfaces; 2013 May; 5(10):4162-5. PubMed ID: 23611655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visibly transparent polymer solar cells produced by solution processing.
    Chen CC; Dou L; Zhu R; Chung CH; Song TB; Zheng YB; Hawks S; Li G; Weiss PS; Yang Y
    ACS Nano; 2012 Aug; 6(8):7185-90. PubMed ID: 22789123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recycling of high purity selenium from CIGS solar cell waste materials.
    Gustafsson AM; Foreman MR; Ekberg C
    Waste Manag; 2014 Oct; 34(10):1775-82. PubMed ID: 24472714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.
    Singh M; Jiu J; Sugahara T; Suganuma K
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16297-303. PubMed ID: 25180569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.
    Luo XG; Le Wu M; Wang XX; Zhong XH; Zhao K; Wang JN
    ChemSusChem; 2016 Feb; 9(3):296-301. PubMed ID: 26784865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method.
    Diao CC; Kuo HH; Tzou WC; Chen YL; Yang CF
    Materials (Basel); 2014 Jan; 7(1):206-217. PubMed ID: 28788451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion-beam analysis of CuInSe2 solar cells deposited on polyimide foil.
    Spemann D; Lorenz M; Butz T; Otte K
    Anal Bioanal Chem; 2004 Jun; 379(4):622-7. PubMed ID: 15179537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods.
    Andersen TR; Larsen-Olsen TT; Andreasen B; Böttiger AP; Carlé JE; Helgesen M; Bundgaard E; Norrman K; Andreasen JW; Jørgensen M; Krebs FC
    ACS Nano; 2011 May; 5(5):4188-96. PubMed ID: 21513333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells.
    Steichen M; Thomassey M; Siebentritt S; Dale PJ
    Phys Chem Chem Phys; 2011 Mar; 13(10):4292-302. PubMed ID: 21249244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.
    Palanchoke U; Jovanov V; Kurz H; Obermeyer P; Stiebig H; Knipp D
    Opt Express; 2012 Mar; 20(6):6340-7. PubMed ID: 22418515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of band structure at the Zn(S,O,OH)/Cu(In,Ga)Se2 interface via rapid thermal annealing and their effect on the photovoltaic properties.
    Shin DH; Kim ST; Kim JH; Kang HJ; Ahn BT; Kwon H
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12921-7. PubMed ID: 24175717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly catalytic carbon nanotube/Pt nanohybrid-based transparent counter electrode for efficient dye-sensitized solar cells.
    Chen HY; Liao JY; Lei BX; Kuang DB; Fang Y; Su CY
    Chem Asian J; 2012 Aug; 7(8):1795-802. PubMed ID: 22570255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deposition of CuInS2 thin films using copper- and indium/sulfide-containing precursors through a two-stage MOCVD method.
    Lee SS; Seo KW; Park JP; Kim SK; Shim IW
    Inorg Chem; 2007 Feb; 46(3):1013-7. PubMed ID: 17257045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.