These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 22890968)
1. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone. Wright WR; Palkovits R ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968 [TBL] [Abstract][Full Text] [Related]
2. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond. Omoruyi U; Page S; Hallett J; Miller PW ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831 [TBL] [Abstract][Full Text] [Related]
3. Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts. Deng L; Zhao Y; Li J; Fu Y; Liao B; Guo QX ChemSusChem; 2010 Oct; 3(10):1172-5. PubMed ID: 20872402 [No Abstract] [Full Text] [Related]
4. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. Yun WC; Yang MT; Lin KA J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993 [TBL] [Abstract][Full Text] [Related]
5. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis. Metzker G; Burtoloso AC Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183 [TBL] [Abstract][Full Text] [Related]
6. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone. Gowda RR; Chen EY ChemSusChem; 2016 Jan; 9(2):181-5. PubMed ID: 26735911 [TBL] [Abstract][Full Text] [Related]
7. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. Chia M; Dumesic JA Chem Commun (Camb); 2011 Nov; 47(44):12233-5. PubMed ID: 22005944 [TBL] [Abstract][Full Text] [Related]
8. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts. Du XL; Bi QY; Liu YM; Cao Y; Fan KN ChemSusChem; 2011 Dec; 4(12):1838-43. PubMed ID: 22105964 [TBL] [Abstract][Full Text] [Related]
9. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984 [TBL] [Abstract][Full Text] [Related]
10. RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature. Yang Z; Huang YB; Guo QX; Fu Y Chem Commun (Camb); 2013 Jun; 49(46):5328-30. PubMed ID: 23648801 [TBL] [Abstract][Full Text] [Related]
11. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield. Ruppert AM; Grams J; Jędrzejczyk M; Matras-Michalska J; Keller N; Ostojska K; Sautet P ChemSusChem; 2015 May; 8(9):1538-47. PubMed ID: 25641864 [TBL] [Abstract][Full Text] [Related]
12. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol. Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556 [TBL] [Abstract][Full Text] [Related]
13. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization. Zheng J; Zhu J; Xu X; Wang W; Li J; Zhao Y; Tang K; Song Q; Qi X; Kong D; Tang Y Sci Rep; 2016 Jul; 6():28898. PubMed ID: 27377401 [TBL] [Abstract][Full Text] [Related]
14. Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone. Michel C; Zaffran J; Ruppert AM; Matras-Michalska J; Jędrzejczyk M; Grams J; Sautet P Chem Commun (Camb); 2014 Oct; 50(83):12450-3. PubMed ID: 24980805 [TBL] [Abstract][Full Text] [Related]
15. Enhancing reductive conversion of levulinic acid and levulinates to γ-valerolactone: Role of oxygen vacancy in MnOx catalysts. Liu Y; Gao L; Chang G; Zhou W Bioresour Technol; 2024 Aug; 406():131001. PubMed ID: 38897549 [TBL] [Abstract][Full Text] [Related]
16. Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to gamma-valerolactone in CO(2). Bourne RA; Stevens JG; Ke J; Poliakoff M Chem Commun (Camb); 2007 Nov; (44):4632-4. PubMed ID: 17989815 [TBL] [Abstract][Full Text] [Related]
17. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid. Obregón I; Gandarias I; Al-Shaal MG; Mevissen C; Arias PL; Palkovits R ChemSusChem; 2016 Sep; 9(17):2488-95. PubMed ID: 27483194 [TBL] [Abstract][Full Text] [Related]
18. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production. Villa A; Schiavoni M; Chan-Thaw CE; Fulvio PF; Mayes RT; Dai S; More KL; Veith GM; Prati L ChemSusChem; 2015 Aug; 8(15):2520-8. PubMed ID: 26089180 [TBL] [Abstract][Full Text] [Related]
19. Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO Decarpigny C; Noël S; Addad A; Ponchel A; Monflier E; Bleta R Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572104 [TBL] [Abstract][Full Text] [Related]
20. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid. García-Sancho C; Mérida-Robles JM; Cecilia-Buenestado JA; Moreno-Tost R; Maireles-Torres PJ Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]