These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 22891304)

  • 41. Protein knots provide mechano-resilience to an AAA+ protease-mediated proteolysis with profound ATP energy expenses.
    Sriramoju MK; Chen Y; Hsu SD
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140330. PubMed ID: 31756432
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Folding simulations of a de novo designed protein with a betaalphabeta fold.
    Qi Y; Huang Y; Liang H; Liu Z; Lai L
    Biophys J; 2010 Jan; 98(2):321-9. PubMed ID: 20338854
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-molecule detection reveals knot sliding in TrmD denaturation.
    Wang P; Yang L; Liu P; Gao YQ; Zhao XS
    Chemistry; 2013 May; 19(19):5909-16. PubMed ID: 23512842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models.
    Chan HS; Zhang Z; Wallin S; Liu Z
    Annu Rev Phys Chem; 2011; 62():301-26. PubMed ID: 21453060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymer uncrossing and knotting in protein folding, and their role in minimal folding pathways.
    Mohazab AR; Plotkin SS
    PLoS One; 2013; 8(1):e53642. PubMed ID: 23365638
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
    Maisuradze GG; Senet P; Czaplewski C; Liwo A; Scheraga HA
    J Phys Chem A; 2010 Apr; 114(13):4471-85. PubMed ID: 20166738
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discrete kinetic models from funneled energy landscape simulations.
    Schafer NP; Hoffman RM; Burger A; Craig PO; Komives EA; Wolynes PG
    PLoS One; 2012; 7(12):e50635. PubMed ID: 23251375
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Topological transformations in proteins: effects of heating and proximity of an interface.
    Zhao Y; Chwastyk M; Cieplak M
    Sci Rep; 2017 Jan; 7():39851. PubMed ID: 28051124
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Collapse kinetics and chevron plots from simulations of denaturant-dependent folding of globular proteins.
    Liu Z; Reddy G; O'Brien EP; Thirumalai D
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7787-92. PubMed ID: 21512127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The energy cost of polypeptide knot formation and its folding consequences.
    Bustamante A; Sotelo-Campos J; Guerra DG; Floor M; Wilson CAM; Bustamante C; Báez M
    Nat Commun; 2017 Nov; 8(1):1581. PubMed ID: 29146980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of the structural dynamics of a knotted protein and its unknotted analog using molecular dynamics.
    Silva JCA; Chaves EJF; de Carvalho GAU; Rocha GB
    J Mol Model; 2022 Mar; 28(4):108. PubMed ID: 35357594
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Probing the kinetics of single molecule protein folding.
    Leite VB; Onuchic JN; Stell G; Wang J
    Biophys J; 2004 Dec; 87(6):3633-41. PubMed ID: 15465871
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues.
    Badasyan A; Liu Z; Chan HS
    J Mol Biol; 2008 Dec; 384(2):512-30. PubMed ID: 18823994
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Steric confinement and enhanced local flexibility assist knotting in simple models of protein folding.
    Soler MA; Rey A; Faísca PF
    Phys Chem Chem Phys; 2016 Sep; 18(38):26391-26403. PubMed ID: 27722468
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison of the folding of two knotted proteins: YbeA and YibK.
    Mallam AL; Jackson SE
    J Mol Biol; 2007 Feb; 366(2):650-65. PubMed ID: 17169371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The folding pathways and thermodynamics of semiflexible polymers.
    Wu J; Cheng C; Liu G; Zhang P; Chen T
    J Chem Phys; 2018 May; 148(18):184901. PubMed ID: 29764123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design principles for rapid folding of knotted DNA nanostructures.
    Kočar V; Schreck JS; Čeru S; Gradišar H; Bašić N; Pisanski T; Doye JPK; Jerala R
    Nat Commun; 2016 Feb; 7():10803. PubMed ID: 26887681
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Competition between native topology and nonnative interactions in simple and complex folding kinetics of natural and designed proteins.
    Zhang Z; Chan HS
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2920-5. PubMed ID: 20133730
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coevolution of function and the folding landscape: correlation with density of native contacts.
    Hills RD; Brooks CL
    Biophys J; 2008 Nov; 95(9):L57-9. PubMed ID: 18708465
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein folding in the landscape perspective: chevron plots and non-Arrhenius kinetics.
    Chan HS; Dill KA
    Proteins; 1998 Jan; 30(1):2-33. PubMed ID: 9443337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.