BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 22891638)

  • 21. A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly.
    Francis WR; Christianson LM; Kiko R; Powers ML; Shaner NC; Haddock SH
    BMC Genomics; 2013 Mar; 14():167. PubMed ID: 23496952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the quality of barley transcriptome de novo assembling by using a hybrid approach for lines with varying spike and stem coloration.
    Shmakov NА
    Vavilovskii Zhurnal Genet Selektsii; 2021 Feb; 25(1):30-38. PubMed ID: 34901701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments.
    Gahlan P; Singh HR; Shankar R; Sharma N; Kumari A; Chawla V; Ahuja PS; Kumar S
    BMC Genomics; 2012 Mar; 13():126. PubMed ID: 22462805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separating homeologs by phasing in the tetraploid wheat transcriptome.
    Krasileva KV; Buffalo V; Bailey P; Pearce S; Ayling S; Tabbita F; Soria M; Wang S; ; Akhunov E; Uauy C; Dubcovsky J
    Genome Biol; 2013 Jun; 14(6):R66. PubMed ID: 23800085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data.
    Chopra R; Burow G; Farmer A; Mudge J; Simpson CE; Burow MD
    PLoS One; 2014; 9(12):e115055. PubMed ID: 25551607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species.
    Madritsch S; Burg A; Sehr EM
    BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.
    Gan RC; Chen TW; Wu TH; Huang PJ; Lee CC; Yeh YM; Chiu CH; Huang HD; Tang P
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):513. PubMed ID: 28155708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.
    Cerveau N; Jackson DJ
    BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. De novo transcriptome assembly and analyses of gene expression during photomorphogenesis in diploid wheat Triticum monococcum.
    Fox SE; Geniza M; Hanumappa M; Naithani S; Sullivan C; Preece J; Tiwari VK; Elser J; Leonard JM; Sage A; Gresham C; Kerhornou A; Bolser D; McCarthy F; Kersey P; Lazo GR; Jaiswal P
    PLoS One; 2014; 9(5):e96855. PubMed ID: 24821410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar "Svilena".
    Seifert F; Bössow S; Kumlehn J; Gnad H; Scholten S
    BMC Plant Biol; 2016 Apr; 16():97. PubMed ID: 27098368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compacting and correcting Trinity and Oases RNA-Seq
    Cabau C; Escudié F; Djari A; Guiguen Y; Bobe J; Klopp C
    PeerJ; 2017; 5():e2988. PubMed ID: 28224052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impacts of read length and transcriptome complexity for de novo assembly: a simulation study.
    Chang Z; Wang Z; Li G
    PLoS One; 2014; 9(4):e94825. PubMed ID: 24736633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ameliorated de novo transcriptome assembly using Illumina paired end sequence data with Trinity Assembler.
    Bankar KG; Todur VN; Shukla RN; Vasudevan M
    Genom Data; 2015 Sep; 5():352-9. PubMed ID: 26484285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome.
    Visser EA; Wegrzyn JL; Steenkmap ET; Myburg AA; Naidoo S
    BMC Genomics; 2015 Dec; 16():1057. PubMed ID: 26652261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic tools for durum wheat breeding: de novo assembly of Svevo transcriptome and SNP discovery in elite germplasm.
    Vendramin V; Ormanbekova D; Scalabrin S; Scaglione D; Maccaferri M; Martelli P; Salvi S; Jurman I; Casadio R; Cattonaro F; Tuberosa R; Massi A; Morgante M
    BMC Genomics; 2019 Apr; 20(1):278. PubMed ID: 30971220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of de novo transcriptome assembly from next-generation sequencing data.
    Surget-Groba Y; Montoya-Burgos JI
    Genome Res; 2010 Oct; 20(10):1432-40. PubMed ID: 20693479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assembly-free rapid differential gene expression analysis in non-model organisms using DNA-protein alignment.
    Shrestha AMS; B Guiao JE; R Santiago KC
    BMC Genomics; 2022 Feb; 23(1):97. PubMed ID: 35120462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of redundant contigs from de novo RNA-Seq assemblies via homology search improves accurate detection of differentially expressed genes.
    Ono H; Ishii K; Kozaki T; Ogiwara I; Kanekatsu M; Yamada T
    BMC Genomics; 2015 Dec; 16():1031. PubMed ID: 26637306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.
    Torre S; Tattini M; Brunetti C; Fineschi S; Fini A; Ferrini F; Sebastiani F
    PLoS One; 2014; 9(11):e112487. PubMed ID: 25393112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.